Nuprl Lemma : weak-continuity-principle-nat+-int-bool-double
∀F,H:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)} .  ∃n:ℕ+. (F f = F (G n) ∧ H f = H (G n))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
true: True
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
less_than: a < b
, 
squash: ↓T
, 
istype: istype(T)
, 
cand: A c∧ B
Lemmas referenced : 
weak-continuity-nat-int, 
nat_plus_wf, 
nat_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
eqtt_to_assert, 
istype-false, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
decidable__lt, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
int_seg_wf, 
subtype_rel_function, 
int_seg_subtype_nat_plus, 
subtype_rel_self, 
add-member-int_seg2, 
nat_properties, 
add-subtract-cancel, 
implies-quotient-true2, 
add-swap, 
exists_wf, 
all_wf, 
equal_wf, 
int_seg_subtype_nat, 
equal-wf-base, 
int_subtype_base, 
trivial-quotient-true, 
imax_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
add_nat_plus, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
subtype_rel_dep_function, 
int_seg_subtype, 
le_weakening, 
imax_ub, 
subtract-add-cancel, 
decidable__equal_int, 
equal-wf-base-T, 
btrue_wf, 
bfalse_wf, 
squash-from-quotient, 
mu_wf, 
band_wf, 
eq_bool_wf, 
assert_of_eq_bool, 
assert_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
mu-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :lambdaEquality_alt, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
functionEquality, 
hypothesis, 
intEquality, 
Error :dependent_set_memberEquality_alt, 
isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
because_Cache, 
Error :inhabitedIsType, 
equalityElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :functionIsType, 
addEquality, 
minusEquality, 
Error :setIsType, 
Error :functionExtensionality_alt, 
applyLambdaEquality, 
Error :productIsType, 
productEquality, 
Error :equalityIsType4, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
Error :inrFormation_alt, 
Error :inlFormation_alt, 
hyp_replacement, 
imageElimination
Latex:
\mforall{}F,H:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .
    \mexists{}n:\mBbbN{}\msupplus{}.  (F  f  =  F  (G  n)  \mwedge{}  H  f  =  H  (G  n))
Date html generated:
2019_06_20-PM-02_51_53
Last ObjectModification:
2018_10_05-PM-05_56_56
Theory : continuity
Home
Index