Nuprl Lemma : weak-continuity-principle-nat+-int-bool-double

F,H:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤg ∈ (ℕ+n ⟶ ℤ)} .  ∃n:ℕ+(F (G n) ∧ (G n))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: uall: [x:A]. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B true: True int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T istype: istype(T) cand: c∧ B
Lemmas referenced :  weak-continuity-nat-int nat_plus_wf nat_wf subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf eqtt_to_assert istype-false eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf int_seg_wf subtype_rel_function int_seg_subtype_nat_plus subtype_rel_self add-member-int_seg2 nat_properties add-subtract-cancel implies-quotient-true2 add-swap exists_wf all_wf equal_wf int_seg_subtype_nat equal-wf-base int_subtype_base trivial-quotient-true imax_wf intformeq_wf int_formula_prop_eq_lemma add_nat_plus add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf subtype_rel_dep_function int_seg_subtype le_weakening imax_ub subtract-add-cancel decidable__equal_int equal-wf-base-T btrue_wf bfalse_wf squash-from-quotient mu_wf band_wf eq_bool_wf assert_of_eq_bool assert_wf iff_transitivity iff_weakening_uiff assert_of_band mu-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :lambdaEquality_alt,  applyEquality functionExtensionality hypothesisEquality functionEquality hypothesis intEquality Error :dependent_set_memberEquality_alt,  isectElimination setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  because_Cache Error :inhabitedIsType,  equalityElimination productElimination equalityTransitivity equalitySymmetry Error :equalityIsType1,  promote_hyp instantiate cumulativity Error :functionIsType,  addEquality minusEquality Error :setIsType,  Error :functionExtensionality_alt,  applyLambdaEquality Error :productIsType,  productEquality Error :equalityIsType4,  imageMemberEquality baseClosed pointwiseFunctionality baseApply closedConclusion Error :inrFormation_alt,  Error :inlFormation_alt,  hyp_replacement imageElimination

Latex:
\mforall{}F,H:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .
    \mexists{}n:\mBbbN{}\msupplus{}.  (F  f  =  F  (G  n)  \mwedge{}  H  f  =  H  (G  n))



Date html generated: 2019_06_20-PM-02_51_53
Last ObjectModification: 2018_10_05-PM-05_56_56

Theory : continuity


Home Index