Nuprl Lemma : weak-continuity-nat-int

F:(ℕ ⟶ ℤ) ⟶ ℕ. ∀f:ℕ ⟶ ℤ.  ⇃(∃n:ℕ. ∀g:ℕ ⟶ ℤ((f g ∈ (ℕn ⟶ ℤ))  ((F f) (F g) ∈ ℕ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q
Lemmas referenced :  weak-continuity-equipollent equipollent-int-nat
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin intEquality independent_functionElimination hypothesis

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.    \00D9(\mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.  ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2017_09_29-PM-06_05_58
Last ObjectModification: 2017_07_05-PM-06_15_58

Theory : continuity


Home Index