Nuprl Lemma : comb_for_pi1_wf
λA,B,p,z. (fst(p)) ∈ A:Type ⟶ B:(A ⟶ Type) ⟶ p:(a:A × B[a]) ⟶ (↓True) ⟶ A
Proof
Definitions occuring in Statement : 
so_apply: x[s]
, 
pi1: fst(t)
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
pi1_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
Error :productIsType, 
applyEquality, 
Error :functionIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mlambda{}A,B,p,z.  (fst(p))  \mmember{}  A:Type  {}\mrightarrow{}  B:(A  {}\mrightarrow{}  Type)  {}\mrightarrow{}  p:(a:A  \mtimes{}  B[a])  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  A
Date html generated:
2019_06_20-AM-11_18_19
Last ObjectModification:
2018_09_27-PM-05_34_15
Theory : core_2
Home
Index