Nuprl Lemma : not-not-p-or-not-p-example

P:ℙ(¬¬(P ∨ P)))


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] not: ¬A or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False or: P ∨ Q uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  istype-universe istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin sqequalRule Error :functionIsType,  Error :unionIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis independent_functionElimination voidElimination Error :universeIsType,  universeEquality Error :inrFormation_alt,  Error :inlFormation_alt,  Error :inhabitedIsType

Latex:
\mforall{}P:\mBbbP{}.  (\mneg{}\mneg{}(P  \mvee{}  (\mneg{}P)))



Date html generated: 2019_06_20-AM-11_19_06
Last ObjectModification: 2018_10_11-PM-08_08_30

Theory : core_2


Home Index