Nuprl Lemma : not-not-p-or-not-p-example
∀P:ℙ. (¬¬(P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
istype-universe, 
istype-void
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
sqequalRule, 
Error :functionIsType, 
Error :unionIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
universeEquality, 
Error :inrFormation_alt, 
Error :inlFormation_alt, 
Error :inhabitedIsType
Latex:
\mforall{}P:\mBbbP{}.  (\mneg{}\mneg{}(P  \mvee{}  (\mneg{}P)))
Date html generated:
2019_06_20-AM-11_19_06
Last ObjectModification:
2018_10_11-PM-08_08_30
Theory : core_2
Home
Index