Nuprl Lemma : unit_triviality
∀[a:Unit]. (a = ⋅ ∈ Unit)
Proof
Definitions occuring in Statement : 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
it: ⋅
Lemmas referenced : 
it_wf, 
unit_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
sqequalHypSubstitution, 
equalityElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
Error :universeIsType
Latex:
\mforall{}[a:Unit].  (a  =  \mcdot{})
Date html generated:
2019_06_20-AM-11_14_50
Last ObjectModification:
2018_09_26-AM-10_42_02
Theory : core_2
Home
Index