Step
*
of Lemma
assert-deq-disjoint
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[as,bs:A List]. uiff(↑deq-disjoint(eq;as;bs);l_disjoint(A;as;bs))
BY
{ ((UnivCD THENA Auto)
THEN Unfold `deq-disjoint` 0
THEN (RW assert_pushdownC 0 THENA Auto)
THEN (RWO "l_all_iff" 0 THENA Auto)
THEN Unfold `l_disjoint` 0
THEN Auto
THEN D 0
THEN Auto
THEN (With ⌜a⌝ (D (-4))⋅ THENM D -1)
THEN Auto) }
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[as,bs:A List]. uiff(\muparrow{}deq-disjoint(eq;as;bs);l\_disjoint(A;as;bs))
By
Latex:
((UnivCD THENA Auto)
THEN Unfold `deq-disjoint` 0
THEN (RW assert\_pushdownC 0 THENA Auto)
THEN (RWO "l\_all\_iff" 0 THENA Auto)
THEN Unfold `l\_disjoint` 0
THEN Auto
THEN D 0
THEN Auto
THEN (With \mkleeneopen{}a\mkleeneclose{} (D (-4))\mcdot{} THENM D -1)
THEN Auto)
Home
Index