Nuprl Lemma : assert-deq-disjoint

[A:Type]. ∀[eq:EqDecider(A)]. ∀[as,bs:A List].  uiff(↑deq-disjoint(eq;as;bs);l_disjoint(A;as;bs))


Proof




Definitions occuring in Statement :  deq-disjoint: deq-disjoint(eq;as;bs) l_disjoint: l_disjoint(T;l1;l2) list: List deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  deq-disjoint: deq-disjoint(eq;as;bs) l_disjoint: l_disjoint(T;l1;l2) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T subtype_rel: A ⊆B
Lemmas referenced :  assert-deq-member assert_of_bnot l_all_functionality assert-bl-all iff_weakening_uiff iff_transitivity assert_witness deq_wf list_wf deq-disjoint_wf deq-member_wf bnot_wf bl-all_wf assert_wf uiff_wf l_disjoint_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf l_all_wf l_all_iff not_wf all_wf l_member_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut independent_pairFormation isect_memberFormation introduction lambdaFormation thin sqequalHypSubstitution productElimination lemma_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination voidElimination because_Cache sqequalRule lambdaEquality dependent_functionElimination functionEquality addLevel independent_isectElimination setElimination rename setEquality cumulativity natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll imageElimination applyEquality universeEquality independent_pairEquality equalityTransitivity equalitySymmetry impliesFunctionality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[as,bs:A  List].    uiff(\muparrow{}deq-disjoint(eq;as;bs);l\_disjoint(A;as;bs))



Date html generated: 2016_05_14-PM-03_24_04
Last ObjectModification: 2016_01_14-PM-11_22_57

Theory : decidable!equality


Home Index