Step
*
of Lemma
member-l-union-list
∀[T:Type]. ∀eq:EqDecider(T). ∀ll:T List List. ∀x:T. ((x ∈ l-union-list(eq;ll))
⇐⇒ ∃l:T List. ((l ∈ ll) ∧ (x ∈ l)))
BY
{ (InductionOnList THEN Unfold `l-union-list` 0 THEN Reduce 0 THEN Try (Fold `l-union-list` 0⋅)) }
1
1. [T] : Type
2. eq : EqDecider(T)
⊢ ∀x:T. ((x ∈ [])
⇐⇒ ∃l:T List. ((l ∈ []) ∧ (x ∈ l)))
2
1. [T] : Type
2. eq : EqDecider(T)
3. u : T List
4. v : T List List
5. ∀x:T. ((x ∈ l-union-list(eq;v))
⇐⇒ ∃l:T List. ((l ∈ v) ∧ (x ∈ l)))
⊢ ∀x:T. ((x ∈ l-union-list(eq;v) ⋃ u)
⇐⇒ ∃l:T List. ((l ∈ [u / v]) ∧ (x ∈ l)))
Latex:
Latex:
\mforall{}[T:Type]
\mforall{}eq:EqDecider(T). \mforall{}ll:T List List. \mforall{}x:T.
((x \mmember{} l-union-list(eq;ll)) \mLeftarrow{}{}\mRightarrow{} \mexists{}l:T List. ((l \mmember{} ll) \mwedge{} (x \mmember{} l)))
By
Latex:
(InductionOnList THEN Unfold `l-union-list` 0 THEN Reduce 0 THEN Try (Fold `l-union-list` 0\mcdot{}))
Home
Index