Nuprl Lemma : member-l-union-list
∀[T:Type]. ∀eq:EqDecider(T). ∀ll:T List List. ∀x:T. ((x ∈ l-union-list(eq;ll))
⇐⇒ ∃l:T List. ((l ∈ ll) ∧ (x ∈ l)))
Proof
Definitions occuring in Statement :
l-union-list: l-union-list(eq;ll)
,
l_member: (x ∈ l)
,
list: T List
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s]
,
implies: P
⇒ Q
,
l-union-list: l-union-list(eq;ll)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
iff: P
⇐⇒ Q
,
uimplies: b supposing a
,
not: ¬A
,
false: False
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
cand: A c∧ B
,
guard: {T}
Lemmas referenced :
list_induction,
list_wf,
all_wf,
iff_wf,
l_member_wf,
l-union-list_wf,
exists_wf,
list_ind_nil_lemma,
list_ind_cons_lemma,
deq_wf,
null_nil_lemma,
btrue_wf,
member-implies-null-eq-bfalse,
nil_wf,
btrue_neq_bfalse,
or_wf,
equal_wf,
member-union,
cons_member,
cons_wf,
l-union_wf,
and_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
hypothesisEquality,
hypothesis,
sqequalRule,
lambdaEquality,
productEquality,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
rename,
because_Cache,
universeEquality,
independent_pairFormation,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
unionElimination,
addLevel,
orFunctionality,
existsFunctionality,
andLevelFunctionality,
impliesFunctionality,
existsLevelFunctionality,
dependent_pairFormation,
inrFormation,
inlFormation,
dependent_set_memberEquality,
applyEquality,
setElimination,
setEquality,
hyp_replacement,
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type]
\mforall{}eq:EqDecider(T). \mforall{}ll:T List List. \mforall{}x:T.
((x \mmember{} l-union-list(eq;ll)) \mLeftarrow{}{}\mRightarrow{} \mexists{}l:T List. ((l \mmember{} ll) \mwedge{} (x \mmember{} l)))
Date html generated:
2016_10_21-AM-10_38_39
Last ObjectModification:
2016_07_12-AM-05_49_36
Theory : decidable!equality
Home
Index