Step
*
2
of Lemma
nat-to-incomparable-property
1. n : ℕ
2. m : ℕ
3. ¬(n = m ∈ ℤ)
4. ∃l:Atom List. (0 < ||l|| ∧ ((nat-to-str(n) @ [/]) = (nat-to-str(m) @ l) ∈ (Atom List)) ∧ l ≤ [/])
⊢ False
BY
{ (D 3 THEN ExRepD THEN Subst' l ~ [/] -2) }
1
.....equality.....
1. n : ℕ
2. m : ℕ
3. l : Atom List
4. 0 < ||l||
5. (nat-to-str(n) @ [/]) = (nat-to-str(m) @ l) ∈ (Atom List)
6. l ≤ [/]
⊢ l ~ [/]
2
1. n : ℕ
2. m : ℕ
3. l : Atom List
4. 0 < ||l||
5. (nat-to-str(n) @ [/]) = (nat-to-str(m) @ [/]) ∈ (Atom List)
6. l ≤ [/]
⊢ n = m ∈ ℤ
Latex:
Latex:
1. n : \mBbbN{}
2. m : \mBbbN{}
3. \mneg{}(n = m)
4. \mexists{}l:Atom List. (0 < ||l|| \mwedge{} ((nat-to-str(n) @ [/]) = (nat-to-str(m) @ l)) \mwedge{} l \mleq{} [/])
\mvdash{} False
By
Latex:
(D 3 THEN ExRepD THEN Subst' l \msim{} [/] -2)
Home
Index