Nuprl Lemma : nat-to-incomparable-property

[n,m:ℕ].  ¬nat-to-incomparable(n) ≤ nat-to-incomparable(m) supposing ¬(n m ∈ ℤ)


Proof




Definitions occuring in Statement :  nat-to-incomparable: nat-to-incomparable(n) iseg: l1 ≤ l2 nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A int: atom: Atom equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False nat-to-incomparable: nat-to-incomparable(n) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q prop: subtype_rel: A ⊆B name: Name nat: rev_implies:  Q guard: {T} assert: b ifthenelse: if then else fi  deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind cons: [a b] bor: p ∨bq atom-deq: AtomDeq eq_atom: =a y bfalse: ff nil: [] it: exists: x:A. B[x] less_than: a < b squash: T less_than': less_than'(a;b) top: Top sq_type: SQType(T) btrue: tt true: True
Lemmas referenced :  list_wf true_wf squash_wf str-to-nat_wf int_subtype_base str-to-nat-to-str append-cancellation-right length_wf null_cons_lemma null_nil_lemma iseg_nil atom_subtype_base subtype_base_sq cons_iseg length_of_cons_lemma product_subtype_list length_of_nil_lemma list-cases atom-deq_wf assert-deq-member member-nat-to-str iseg_member l_member_wf cons_member member_append nat_wf equal_wf not_wf name_wf nat-to-incomparable_wf iseg_wf nil_wf cons_wf nat-to-str_wf append_wf iseg_append_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution lemma_by_obid isectElimination atomEquality dependent_functionElimination hypothesisEquality hypothesis tokenEquality productElimination independent_functionElimination unionElimination because_Cache voidElimination applyEquality lambdaEquality sqequalRule intEquality setElimination rename isect_memberEquality equalityTransitivity equalitySymmetry inrFormation inlFormation imageElimination promote_hyp hypothesis_subsumption voidEquality instantiate cumulativity independent_isectElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[n,m:\mBbbN{}].    \mneg{}nat-to-incomparable(n)  \mleq{}  nat-to-incomparable(m)  supposing  \mneg{}(n  =  m)



Date html generated: 2016_05_14-PM-03_36_17
Last ObjectModification: 2016_01_14-PM-11_19_20

Theory : decidable!equality


Home Index