Nuprl Lemma : nat-to-incomparable-property
∀[n,m:ℕ].  ¬nat-to-incomparable(n) ≤ nat-to-incomparable(m) supposing ¬(n = m ∈ ℤ)
Proof
Definitions occuring in Statement : 
nat-to-incomparable: nat-to-incomparable(n)
, 
iseg: l1 ≤ l2
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
int: ℤ
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat-to-incomparable: nat-to-incomparable(n)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
name: Name
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
deq-member: x ∈b L
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
cons: [a / b]
, 
bor: p ∨bq
, 
atom-deq: AtomDeq
, 
eq_atom: x =a y
, 
bfalse: ff
, 
nil: []
, 
it: ⋅
, 
exists: ∃x:A. B[x]
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
top: Top
, 
sq_type: SQType(T)
, 
btrue: tt
, 
true: True
Lemmas referenced : 
list_wf, 
true_wf, 
squash_wf, 
str-to-nat_wf, 
int_subtype_base, 
str-to-nat-to-str, 
append-cancellation-right, 
length_wf, 
null_cons_lemma, 
null_nil_lemma, 
iseg_nil, 
atom_subtype_base, 
subtype_base_sq, 
cons_iseg, 
length_of_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
list-cases, 
atom-deq_wf, 
assert-deq-member, 
member-nat-to-str, 
iseg_member, 
l_member_wf, 
cons_member, 
member_append, 
nat_wf, 
equal_wf, 
not_wf, 
name_wf, 
nat-to-incomparable_wf, 
iseg_wf, 
nil_wf, 
cons_wf, 
nat-to-str_wf, 
append_wf, 
iseg_append_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
atomEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
tokenEquality, 
productElimination, 
independent_functionElimination, 
unionElimination, 
because_Cache, 
voidElimination, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
intEquality, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
inlFormation, 
imageElimination, 
promote_hyp, 
hypothesis_subsumption, 
voidEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[n,m:\mBbbN{}].    \mneg{}nat-to-incomparable(n)  \mleq{}  nat-to-incomparable(m)  supposing  \mneg{}(n  =  m)
Date html generated:
2016_05_14-PM-03_36_17
Last ObjectModification:
2016_01_14-PM-11_19_20
Theory : decidable!equality
Home
Index