Nuprl Lemma : append-cancellation-right
∀[T:Type]. ∀[as,as',bs,cs:T List].
(cs = bs ∈ (T List)) supposing (((cs @ as) = (bs @ as') ∈ (T List)) and (||as|| = ||as'|| ∈ ℤ))
Proof
Definitions occuring in Statement :
length: ||as||
,
append: as @ bs
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
guard: {T}
,
or: P ∨ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
Lemmas referenced :
append_wf,
list_wf,
length_wf,
equal_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
intformeq_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__equal_int,
general-append-cancellation
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_isectElimination,
hypothesis,
sqequalRule,
inrFormation,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
unionElimination,
natural_numberEquality,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
productElimination,
axiomEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[as,as',bs,cs:T List].
(cs = bs) supposing (((cs @ as) = (bs @ as')) and (||as|| = ||as'||))
Date html generated:
2016_05_14-AM-07_39_18
Last ObjectModification:
2016_01_15-AM-08_36_43
Theory : list_1
Home
Index