Nuprl Lemma : nat-to-incomparable_wf

[n:ℕ]. (nat-to-incomparable(n) ∈ Name)


Proof




Definitions occuring in Statement :  nat-to-incomparable: nat-to-incomparable(n) name: Name nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  name: Name uall: [x:A]. B[x] member: t ∈ T nat-to-incomparable: nat-to-incomparable(n)
Lemmas referenced :  append_wf nat-to-str_wf cons_wf nil_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin atomEquality hypothesisEquality hypothesis tokenEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (nat-to-incomparable(n)  \mmember{}  Name)



Date html generated: 2016_05_14-PM-03_36_11
Last ObjectModification: 2015_12_26-PM-05_59_28

Theory : decidable!equality


Home Index