Nuprl Lemma : nat-to-incomparable_wf
∀[n:ℕ]. (nat-to-incomparable(n) ∈ Name)
Proof
Definitions occuring in Statement : 
nat-to-incomparable: nat-to-incomparable(n)
, 
name: Name
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
name: Name
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat-to-incomparable: nat-to-incomparable(n)
Lemmas referenced : 
append_wf, 
nat-to-str_wf, 
cons_wf, 
nil_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
atomEquality, 
hypothesisEquality, 
hypothesis, 
tokenEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (nat-to-incomparable(n)  \mmember{}  Name)
Date html generated:
2016_05_14-PM-03_36_11
Last ObjectModification:
2015_12_26-PM-05_59_28
Theory : decidable!equality
Home
Index