Nuprl Lemma : iseg_nil
∀[T:Type]. ∀L:T List. (L ≤ []
⇐⇒ ↑null(L))
Proof
Definitions occuring in Statement :
iseg: l1 ≤ l2
,
null: null(as)
,
nil: []
,
list: T List
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
universe: Type
Definitions unfolded in proof :
iseg: l1 ≤ l2
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
exists: ∃x:A. B[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
true: True
,
not: ¬A
,
false: False
Lemmas referenced :
list_induction,
iff_wf,
list_wf,
equal-wf-base-T,
append_wf,
assert_wf,
null_wf,
list_ind_nil_lemma,
istype-void,
null_nil_lemma,
list_ind_cons_lemma,
null_cons_lemma,
nil_wf,
istype-assert,
decidable__true,
cons_wf,
decidable__false,
btrue_wf,
bfalse_wf,
btrue_neq_bfalse
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :isect_memberFormation_alt,
Error :lambdaFormation_alt,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
Error :lambdaEquality_alt,
productEquality,
hypothesis,
baseClosed,
Error :universeIsType,
independent_functionElimination,
dependent_functionElimination,
Error :isect_memberEquality_alt,
voidElimination,
rename,
Error :productIsType,
Error :functionIsType,
because_Cache,
Error :equalityIstype,
independent_pairFormation,
unionElimination,
natural_numberEquality,
Error :dependent_pairFormation_alt,
productElimination,
equalityTransitivity,
equalitySymmetry,
Error :dependent_set_memberEquality_alt,
Error :inhabitedIsType,
applyLambdaEquality,
setElimination
Latex:
\mforall{}[T:Type]. \mforall{}L:T List. (L \mleq{} [] \mLeftarrow{}{}\mRightarrow{} \muparrow{}null(L))
Date html generated:
2019_06_20-PM-01_28_56
Last ObjectModification:
2019_01_10-PM-09_52_14
Theory : list_1
Home
Index