Nuprl Lemma : iseg_nil
∀[T:Type]. ∀L:T List. (L ≤ [] 
⇐⇒ ↑null(L))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
null: null(as)
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
iseg: l1 ≤ l2
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
true: True
, 
not: ¬A
, 
false: False
Lemmas referenced : 
list_induction, 
iff_wf, 
list_wf, 
equal-wf-base-T, 
append_wf, 
assert_wf, 
null_wf, 
list_ind_nil_lemma, 
istype-void, 
null_nil_lemma, 
list_ind_cons_lemma, 
null_cons_lemma, 
nil_wf, 
istype-assert, 
decidable__true, 
cons_wf, 
decidable__false, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
productEquality, 
hypothesis, 
baseClosed, 
Error :universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
rename, 
Error :productIsType, 
Error :functionIsType, 
because_Cache, 
Error :equalityIstype, 
independent_pairFormation, 
unionElimination, 
natural_numberEquality, 
Error :dependent_pairFormation_alt, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :dependent_set_memberEquality_alt, 
Error :inhabitedIsType, 
applyLambdaEquality, 
setElimination
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (L  \mleq{}  []  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}null(L))
Date html generated:
2019_06_20-PM-01_28_56
Last ObjectModification:
2019_01_10-PM-09_52_14
Theory : list_1
Home
Index