Nuprl Lemma : iseg_nil

[T:Type]. ∀L:T List. (L ≤ [] ⇐⇒ ↑null(L))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 null: null(as) nil: [] list: List assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: exists: x:A. B[x] so_apply: x[s] implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q true: True not: ¬A false: False
Lemmas referenced :  list_induction iff_wf list_wf equal-wf-base-T append_wf assert_wf null_wf list_ind_nil_lemma istype-void null_nil_lemma list_ind_cons_lemma null_cons_lemma nil_wf istype-assert decidable__true cons_wf decidable__false btrue_wf bfalse_wf btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality Error :lambdaEquality_alt,  productEquality hypothesis baseClosed Error :universeIsType,  independent_functionElimination dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination rename Error :productIsType,  Error :functionIsType,  because_Cache Error :equalityIstype,  independent_pairFormation unionElimination natural_numberEquality Error :dependent_pairFormation_alt,  productElimination equalityTransitivity equalitySymmetry Error :dependent_set_memberEquality_alt,  Error :inhabitedIsType,  applyLambdaEquality setElimination

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (L  \mleq{}  []  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}null(L))



Date html generated: 2019_06_20-PM-01_28_56
Last ObjectModification: 2019_01_10-PM-09_52_14

Theory : list_1


Home Index