Nuprl Lemma : iseg_append_iff
∀[T:Type]
  ∀l1,l2,l3:T List.  (l1 ≤ l2 @ l3 
⇐⇒ l1 ≤ l2 ∨ (∃l:T List. (0 < ||l|| ∧ (l1 = (l2 @ l) ∈ (T List)) ∧ l ≤ l3)))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
iff_wf, 
iseg_wf, 
append_wf, 
or_wf, 
exists_wf, 
less_than_wf, 
length_wf, 
equal_wf, 
length-append, 
nil_iseg, 
equal-wf-base-T, 
length_of_nil_lemma, 
nil_wf, 
cons_wf, 
length_of_cons_lemma, 
list_ind_nil_lemma, 
non_neg_length, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
iseg_nil, 
null_cons_lemma, 
list_ind_cons_lemma, 
cons_iseg, 
iseg_append, 
reduce_tl_cons_lemma, 
and_wf, 
tl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
productEquality, 
natural_numberEquality, 
applyLambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
universeEquality, 
independent_pairFormation, 
inlFormation, 
baseClosed, 
inrFormation, 
dependent_pairFormation, 
addEquality, 
unionElimination, 
productElimination, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
computeAll, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
addLevel, 
orFunctionality, 
dependent_set_memberEquality, 
equalityTransitivity, 
setElimination
Latex:
\mforall{}[T:Type]
    \mforall{}l1,l2,l3:T  List.
        (l1  \mleq{}  l2  @  l3  \mLeftarrow{}{}\mRightarrow{}  l1  \mleq{}  l2  \mvee{}  (\mexists{}l:T  List.  (0  <  ||l||  \mwedge{}  (l1  =  (l2  @  l))  \mwedge{}  l  \mleq{}  l3)))
Date html generated:
2017_04_17-AM-08_45_52
Last ObjectModification:
2017_02_27-PM-05_05_05
Theory : list_1
Home
Index