Nuprl Lemma : iseg_append_iff

[T:Type]
  ∀l1,l2,l3:T List.  (l1 ≤ l2 l3 ⇐⇒ l1 ≤ l2 ∨ (∃l:T List. (0 < ||l|| ∧ (l1 (l2 l) ∈ (T List)) ∧ l ≤ l3)))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 length: ||as|| append: as bs list: List less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top so_apply: x[s] implies:  Q iff: ⇐⇒ Q or: P ∨ Q rev_implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] guard: {T} exists: x:A. B[x] cand: c∧ B ge: i ≥  decidable: Dec(P) le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A assert: b ifthenelse: if then else fi  bfalse: ff squash: T true: True
Lemmas referenced :  list_induction all_wf list_wf iff_wf iseg_wf append_wf or_wf exists_wf less_than_wf length_wf equal_wf length-append nil_iseg equal-wf-base-T length_of_nil_lemma nil_wf cons_wf length_of_cons_lemma list_ind_nil_lemma non_neg_length decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf iseg_nil null_cons_lemma list_ind_cons_lemma cons_iseg iseg_append reduce_tl_cons_lemma and_wf tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis because_Cache productEquality natural_numberEquality applyLambdaEquality isect_memberEquality voidElimination voidEquality independent_functionElimination rename dependent_functionElimination universeEquality independent_pairFormation inlFormation baseClosed inrFormation dependent_pairFormation addEquality unionElimination productElimination independent_isectElimination int_eqEquality intEquality computeAll hyp_replacement equalitySymmetry applyEquality imageElimination imageMemberEquality addLevel orFunctionality dependent_set_memberEquality equalityTransitivity setElimination

Latex:
\mforall{}[T:Type]
    \mforall{}l1,l2,l3:T  List.
        (l1  \mleq{}  l2  @  l3  \mLeftarrow{}{}\mRightarrow{}  l1  \mleq{}  l2  \mvee{}  (\mexists{}l:T  List.  (0  <  ||l||  \mwedge{}  (l1  =  (l2  @  l))  \mwedge{}  l  \mleq{}  l3)))



Date html generated: 2017_04_17-AM-08_45_52
Last ObjectModification: 2017_02_27-PM-05_05_05

Theory : list_1


Home Index