Nuprl Lemma : cons_iseg

[T:Type]. ∀a,b:T. ∀l1,l2:T List.  ([a l1] ≤ [b l2] ⇐⇒ (a b ∈ T) ∧ l1 ≤ l2)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  true: True listp: List+ decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] squash: T uimplies: supposing a ge: i ≥  prop: subtype_rel: A ⊆B iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T rev_implies:  Q
Lemmas referenced :  istype-void true_wf tl_wf reduce_tl_cons_lemma equal_wf length_of_cons_lemma non_neg_length decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf less_than_wf list_ind_cons_lemma reduce_hd_cons_lemma hd_wf squash_wf ge_wf length_wf length_cons_ge_one subtype_rel_list top_wf cons_wf append_wf list_wf
Rules used in proof :  Error :isect_memberEquality_alt,  Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  hyp_replacement applyLambdaEquality setElimination rename dependent_set_memberEquality addEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality applyEquality lambdaEquality imageElimination independent_isectElimination equalityTransitivity equalitySymmetry natural_numberEquality cumulativity because_Cache imageMemberEquality baseClosed sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation cut sqequalHypSubstitution productElimination thin hypothesis Error :productIsType,  Error :inhabitedIsType,  hypothesisEquality Error :equalityIsType1,  introduction extract_by_obid isectElimination Error :universeIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}a,b:T.  \mforall{}l1,l2:T  List.    ([a  /  l1]  \mleq{}  [b  /  l2]  \mLeftarrow{}{}\mRightarrow{}  (a  =  b)  \mwedge{}  l1  \mleq{}  l2)



Date html generated: 2019_06_20-PM-02_12_50
Last ObjectModification: 2019_06_20-PM-02_08_37

Theory : list_1


Home Index