Step
*
of Lemma
cons_iseg
∀[T:Type]. ∀a,b:T. ∀l1,l2:T List. ([a / l1] ≤ [b / l2]
⇐⇒ (a = b ∈ T) ∧ l1 ≤ l2)
BY
{ ((Unfold `iseg` 0 THEN Auto) THEN ExRepD) }
1
1. T : Type
2. a : T
3. b : T
4. l1 : T List
5. l2 : T List
6. l : T List
7. [b / l2] = ([a / l1] @ l) ∈ (T List)
⊢ a = b ∈ T
2
1. [T] : Type
2. a : T
3. b : T
4. l1 : T List
5. l2 : T List
6. l : T List
7. [b / l2] = ([a / l1] @ l) ∈ (T List)
⊢ ∃l:T List. (l2 = (l1 @ l) ∈ (T List))
3
1. [T] : Type
2. a : T
3. b : T
4. l1 : T List
5. l2 : T List
6. a = b ∈ T
7. l : T List
8. l2 = (l1 @ l) ∈ (T List)
⊢ ∃l:T List. ([b / l2] = ([a / l1] @ l) ∈ (T List))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}a,b:T. \mforall{}l1,l2:T List. ([a / l1] \mleq{} [b / l2] \mLeftarrow{}{}\mRightarrow{} (a = b) \mwedge{} l1 \mleq{} l2)
By
Latex:
((Unfold `iseg` 0 THEN Auto) THEN ExRepD)
Home
Index