Nuprl Lemma : iseg_member
∀[T:Type]. ∀l1,l2:T List. ∀x:T.  (l1 ≤ l2 
⇒ (x ∈ l1) 
⇒ (x ∈ l2))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
iseg_implies_member, 
l_member_wf, 
iseg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.  \mforall{}x:T.    (l1  \mleq{}  l2  {}\mRightarrow{}  (x  \mmember{}  l1)  {}\mRightarrow{}  (x  \mmember{}  l2))
Date html generated:
2016_05_14-PM-01_32_21
Last ObjectModification:
2015_12_26-PM-05_25_04
Theory : list_1
Home
Index