Nuprl Lemma : iseg_member

[T:Type]. ∀l1,l2:T List. ∀x:T.  (l1 ≤ l2  (x ∈ l1)  (x ∈ l2))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} prop:
Lemmas referenced :  iseg_implies_member l_member_wf iseg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.  \mforall{}x:T.    (l1  \mleq{}  l2  {}\mRightarrow{}  (x  \mmember{}  l1)  {}\mRightarrow{}  (x  \mmember{}  l2))



Date html generated: 2016_05_14-PM-01_32_21
Last ObjectModification: 2015_12_26-PM-05_25_04

Theory : list_1


Home Index