Step
*
1
3
1
1
1
1
of Lemma
permutation-iff-count1
.....truecase..... 
1. T : Type
2. eq : T ⟶ T ⟶ 𝔹
3. ∀x,y:T.  (↑(eq x y) 
⇐⇒ x = y ∈ T)
4. u : T
5. v : T List
6. ∀b1:T List. ((∀x:T. (||filter(eq x;v)|| = ||filter(eq x;b1)|| ∈ ℤ)) 
⇒ permutation(T;v;b1))
7. u1 : T
8. v1 : T List
9. (∀x:T. (||filter(eq x;[u / v])|| = ||filter(eq x;v1)|| ∈ ℤ)) 
⇒ permutation(T;[u / v];v1)
10. ∀x:T. (||filter(eq x;[u / v])|| = ||filter(eq x;[u1 / v1])|| ∈ ℤ)
11. u = u1 ∈ T
12. x : T
13. ||[u1 / filter(eq x;v)]|| = ||[u1 / filter(eq x;v1)]|| ∈ ℤ
14. ↑(eq x u1)
⊢ ||filter(eq x;v)|| = ||filter(eq x;v1)|| ∈ ℤ
BY
{ (Reduce (-2) THEN Auto) }
Latex:
Latex:
.....truecase..... 
1.  T  :  Type
2.  eq  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}
3.  \mforall{}x,y:T.    (\muparrow{}(eq  x  y)  \mLeftarrow{}{}\mRightarrow{}  x  =  y)
4.  u  :  T
5.  v  :  T  List
6.  \mforall{}b1:T  List.  ((\mforall{}x:T.  (||filter(eq  x;v)||  =  ||filter(eq  x;b1)||))  {}\mRightarrow{}  permutation(T;v;b1))
7.  u1  :  T
8.  v1  :  T  List
9.  (\mforall{}x:T.  (||filter(eq  x;[u  /  v])||  =  ||filter(eq  x;v1)||))  {}\mRightarrow{}  permutation(T;[u  /  v];v1)
10.  \mforall{}x:T.  (||filter(eq  x;[u  /  v])||  =  ||filter(eq  x;[u1  /  v1])||)
11.  u  =  u1
12.  x  :  T
13.  ||[u1  /  filter(eq  x;v)]||  =  ||[u1  /  filter(eq  x;v1)]||
14.  \muparrow{}(eq  x  u1)
\mvdash{}  ||filter(eq  x;v)||  =  ||filter(eq  x;v1)||
By
Latex:
(Reduce  (-2)  THEN  Auto)
Home
Index