Nuprl Lemma : permutation-iff-count1
∀[T:Type]
  ∀eq:T ⟶ T ⟶ 𝔹
    ((∀x,y:T.  (↑(eq x y) ⇐⇒ x = y ∈ T))
    ⇒ (∀a1,b1:T List.  (∀x:T. (||filter(eq x;a1)|| = ||filter(eq x;b1)|| ∈ ℤ) ⇐⇒ permutation(T;a1;b1))))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2), 
length: ||as||, 
filter: filter(P;l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
nat: ℕ, 
istype: istype(T), 
uimplies: b supposing a, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
top: Top, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
ge: i ≥ j , 
false: False, 
le: A ≤ B, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
bfalse: ff, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
decidable: Dec(P), 
squash: ↓T, 
true: True, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
deq: EqDecider(T), 
cand: A c∧ B, 
permutation: permutation(T;L1;L2)
Lemmas referenced : 
istype-universe, 
istype-assert, 
cons_wf, 
permutation-nil, 
nil_wf, 
permutation_wf, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
l_member_wf, 
bool_wf, 
subtype_rel_dep_function, 
filter_wf5, 
length_wf_nat, 
equal-wf-base, 
list_wf, 
list_induction, 
filter_nil_lemma, 
istype-void, 
filter_cons_lemma, 
length_of_nil_lemma, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
length_of_cons_lemma, 
non_neg_length, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
assert_of_bnot, 
not_wf, 
bnot_wf, 
assert_wf, 
equal-wf-T-base, 
uiff_transitivity, 
permutation-cons2, 
decidable__equal_int, 
add-is-int-iff, 
intformnot_wf, 
int_formula_prop_not_lemma, 
false_wf, 
member-exists2, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
member_filter, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
l_member_decomp, 
append_wf, 
istype-nat, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length-append, 
add-associates, 
length_wf, 
filter_append_sq, 
equal_wf, 
add_functionality_wrt_eq, 
ifthenelse_wf, 
ite_rw_false, 
iff_weakening_uiff, 
assert-deq, 
permutation-swap-first2, 
permutation_inversion, 
permutation_transitivity, 
permutation-rotate, 
iff_wf, 
set_wf, 
all_wf, 
permute_list_wf, 
int_seg_wf, 
inject_wf, 
nat_wf, 
subtype_rel_list, 
permutation-filter, 
permutation-length
Rules used in proof : 
cut, 
universeEquality, 
instantiate, 
productIsType, 
dependent_functionElimination, 
equalitySymmetry, 
sqequalBase, 
equalityIstype, 
functionIsType, 
independent_functionElimination, 
natural_numberEquality, 
rename, 
setElimination, 
independent_isectElimination, 
universeIsType, 
setIsType, 
setEquality, 
inhabitedIsType, 
because_Cache, 
applyEquality, 
intEquality, 
hypothesis, 
functionEquality, 
lambdaEquality_alt, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
isect_memberEquality_alt, 
voidElimination, 
equalityTransitivity, 
unionElimination, 
cumulativity, 
productElimination, 
closedConclusion, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
baseClosed, 
equalityElimination, 
hyp_replacement, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
equalityIsType1, 
imageElimination, 
imageMemberEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
functionExtensionality, 
lambdaEquality, 
lambdaFormation, 
isect_memberFormation, 
productEquality, 
dependent_set_memberEquality, 
dependent_pairFormation
Latex:
\mforall{}[T:Type]
    \mforall{}eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}
        ((\mforall{}x,y:T.    (\muparrow{}(eq  x  y)  \mLeftarrow{}{}\mRightarrow{}  x  =  y))
        {}\mRightarrow{}  (\mforall{}a1,b1:T  List.
                    (\mforall{}x:T.  (||filter(eq  x;a1)||  =  ||filter(eq  x;b1)||)  \mLeftarrow{}{}\mRightarrow{}  permutation(T;a1;b1))))
Date html generated:
2019_10_15-AM-10_24_11
Last ObjectModification:
2019_08_05-PM-02_09_03
Theory : decidable!equality
Home
Index