Nuprl Lemma : permutation-iff-count1

[T:Type]
  ∀eq:T ⟶ T ⟶ 𝔹
    ((∀x,y:T.  (↑(eq y) ⇐⇒ y ∈ T))
     (∀a1,b1:T List.  (∀x:T. (||filter(eq x;a1)|| ||filter(eq x;b1)|| ∈ ℤ⇐⇒ permutation(T;a1;b1))))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) length: ||as|| filter: filter(P;l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q nat: istype: istype(T) uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x] top: Top or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt ge: i ≥  false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff it: unit: Unit bool: 𝔹 decidable: Dec(P) squash: T true: True append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] deq: EqDecider(T) cand: c∧ B permutation: permutation(T;L1;L2)
Lemmas referenced :  istype-universe istype-assert cons_wf permutation-nil nil_wf permutation_wf int_subtype_base istype-int le_wf set_subtype_base l_member_wf bool_wf subtype_rel_dep_function filter_wf5 length_wf_nat equal-wf-base list_wf list_induction filter_nil_lemma istype-void filter_cons_lemma length_of_nil_lemma bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert length_of_cons_lemma non_neg_length full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf eqff_to_assert assert_of_bnot not_wf bnot_wf assert_wf equal-wf-T-base uiff_transitivity permutation-cons2 decidable__equal_int add-is-int-iff intformnot_wf int_formula_prop_not_lemma false_wf member-exists2 decidable__lt intformless_wf int_formula_prop_less_lemma member_filter squash_wf true_wf subtype_rel_self iff_weakening_equal l_member_decomp append_wf istype-nat list_ind_cons_lemma list_ind_nil_lemma length-append add-associates length_wf filter_append_sq equal_wf add_functionality_wrt_eq ifthenelse_wf ite_rw_false iff_weakening_uiff assert-deq permutation-swap-first2 permutation_inversion permutation_transitivity permutation-rotate iff_wf set_wf all_wf permute_list_wf int_seg_wf inject_wf nat_wf subtype_rel_list permutation-filter permutation-length
Rules used in proof :  cut universeEquality instantiate productIsType dependent_functionElimination equalitySymmetry sqequalBase equalityIstype functionIsType independent_functionElimination natural_numberEquality rename setElimination independent_isectElimination universeIsType setIsType setEquality inhabitedIsType because_Cache applyEquality intEquality hypothesis functionEquality lambdaEquality_alt sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution isect_memberEquality_alt voidElimination equalityTransitivity unionElimination cumulativity productElimination closedConclusion approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation baseClosed equalityElimination hyp_replacement applyLambdaEquality pointwiseFunctionality promote_hyp baseApply equalityIsType1 imageElimination imageMemberEquality dependent_set_memberEquality_alt addEquality functionExtensionality lambdaEquality lambdaFormation isect_memberFormation productEquality dependent_set_memberEquality dependent_pairFormation

Latex:
\mforall{}[T:Type]
    \mforall{}eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}
        ((\mforall{}x,y:T.    (\muparrow{}(eq  x  y)  \mLeftarrow{}{}\mRightarrow{}  x  =  y))
        {}\mRightarrow{}  (\mforall{}a1,b1:T  List.
                    (\mforall{}x:T.  (||filter(eq  x;a1)||  =  ||filter(eq  x;b1)||)  \mLeftarrow{}{}\mRightarrow{}  permutation(T;a1;b1))))



Date html generated: 2019_10_15-AM-10_24_11
Last ObjectModification: 2019_08_05-PM-02_09_03

Theory : decidable!equality


Home Index