Nuprl Lemma : l_member_decomp
∀[T:Type]. ∀l:T List. ∀x:T.  ((x ∈ l) ⇐⇒ ∃l1,l2:T List. (l = (l1 @ [x] @ l2) ∈ (T List)))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l), 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
false: False, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
cons: [a / b], 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
true: True, 
not: ¬A, 
uiff: uiff(P;Q), 
append: as @ bs, 
squash: ↓T, 
cand: A c∧ B, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
sq_stable: SqStable(P), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b)
Lemmas referenced : 
list_induction, 
all_wf, 
iff_wf, 
l_member_wf, 
exists_wf, 
list_wf, 
equal_wf, 
append_wf, 
cons_wf, 
nil_wf, 
false_wf, 
equal-wf-base-T, 
nil_member, 
or_wf, 
cons_member, 
equal-wf-T-base, 
list-cases, 
list_ind_nil_lemma, 
product_subtype_list, 
list_ind_cons_lemma, 
subtype_base_sq, 
int_subtype_base, 
null_nil_lemma, 
btrue_wf, 
null_cons_lemma, 
bfalse_wf, 
and_wf, 
null_wf, 
btrue_neq_bfalse, 
iff_transitivity, 
iff_weakening_uiff, 
append_is_nil, 
squash_wf, 
true_wf, 
hd_wf, 
length_of_nil_lemma, 
cons_neq_nil, 
length_of_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__le, 
not-ge-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
reduce_hd_cons_lemma, 
tl_wf, 
reduce_tl_cons_lemma, 
member_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
baseClosed, 
because_Cache, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
dependent_functionElimination, 
rename, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
productEquality, 
applyLambdaEquality, 
unionElimination, 
isect_memberEquality, 
voidEquality, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
instantiate, 
intEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
setElimination, 
dependent_pairFormation, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
addEquality, 
minusEquality, 
inlFormation, 
inrFormation, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  \mforall{}x:T.    ((x  \mmember{}  l)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}l1,l2:T  List.  (l  =  (l1  @  [x]  @  l2)))
Date html generated:
2017_04_14-AM-08_41_14
Last ObjectModification:
2017_02_27-PM-03_31_54
Theory : list_0
Home
Index