Nuprl Lemma : permutation-filter
∀[A:Type]. ∀L1,L2:A List.  (permutation(A;L1;L2) 
⇒ (∀p:A ⟶ 𝔹. permutation({a:A| ↑(p a)} filter(p;L1);filter(p;L2))))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
filter: filter(P;l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
top: Top
, 
or: P ∨ Q
, 
cons: [a / b]
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
permutation_wf, 
bool_wf, 
assert_wf, 
filter_type, 
filter_nil_lemma, 
nil_wf, 
filter_cons_lemma, 
cons_wf, 
list-cases, 
product_subtype_list, 
permutation_weakening, 
permutation-length, 
length_of_nil_lemma, 
length_of_cons_lemma, 
eqtt_to_assert, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
permutation-cons, 
filter_append_sq, 
append_wf, 
length_wf, 
length-append, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
functionEquality, 
setEquality, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
rename, 
universeEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
independent_isectElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
instantiate, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality, 
productEquality
Latex:
\mforall{}[A:Type]
    \mforall{}L1,L2:A  List.
        (permutation(A;L1;L2)  {}\mRightarrow{}  (\mforall{}p:A  {}\mrightarrow{}  \mBbbB{}.  permutation(\{a:A|  \muparrow{}(p  a)\}  ;filter(p;L1);filter(p;L2))))
Date html generated:
2017_04_17-AM-08_24_46
Last ObjectModification:
2017_02_27-PM-04_46_50
Theory : list_1
Home
Index