Step * 2 1 of Lemma remove-repeats_functionality_wrt_permutation


1. [T] Type
2. eq EqDecider(T)
3. : ℕ
4. T
5. List
6. ∀L2:T List
     (||L2|| < ||[u v]||
      (∀L3:T List. (permutation(T;L2;L3)  permutation(T;remove-repeats(eq;L2);remove-repeats(eq;L3)))))
7. L2 List
8. permutation(T;[u v];L2)
9. as List
10. bs List
11. permutation(T;v;as bs)
12. permutation(T;remove-repeats(eq;v);remove-repeats(eq;as bs))
⊢ permutation(T;[u filter(λx.(¬b(eq u));remove-repeats(eq;v))];remove-repeats(eq;as [u bs]))
BY
TACTIC:Assert ⌜permutation(T;[u filter(λx.(¬b(eq u));remove-repeats(eq;v))];[u 
                                                                                   filter(λx.(¬b(eq u));
                                                                                          remove-repeats(eq;as bs))])⌝
⋅ }

1
.....assertion..... 
1. [T] Type
2. eq EqDecider(T)
3. : ℕ
4. T
5. List
6. ∀L2:T List
     (||L2|| < ||[u v]||
      (∀L3:T List. (permutation(T;L2;L3)  permutation(T;remove-repeats(eq;L2);remove-repeats(eq;L3)))))
7. L2 List
8. permutation(T;[u v];L2)
9. as List
10. bs List
11. permutation(T;v;as bs)
12. permutation(T;remove-repeats(eq;v);remove-repeats(eq;as bs))
⊢ permutation(T;[u filter(λx.(¬b(eq u));remove-repeats(eq;v))];[u 
                                                                    filter(λx.(¬b(eq u));remove-repeats(eq;as bs))])

2
1. [T] Type
2. eq EqDecider(T)
3. : ℕ
4. T
5. List
6. ∀L2:T List
     (||L2|| < ||[u v]||
      (∀L3:T List. (permutation(T;L2;L3)  permutation(T;remove-repeats(eq;L2);remove-repeats(eq;L3)))))
7. L2 List
8. permutation(T;[u v];L2)
9. as List
10. bs List
11. permutation(T;v;as bs)
12. permutation(T;remove-repeats(eq;v);remove-repeats(eq;as bs))
13. permutation(T;[u filter(λx.(¬b(eq u));remove-repeats(eq;v))];[u 
                                                                      filter(λx.(¬b(eq u));remove-repeats(eq;as
                                                                                             bs))])
⊢ permutation(T;[u filter(λx.(¬b(eq u));remove-repeats(eq;v))];remove-repeats(eq;as [u bs]))


Latex:


Latex:

1.  [T]  :  Type
2.  eq  :  EqDecider(T)
3.  n  :  \mBbbN{}
4.  u  :  T
5.  v  :  T  List
6.  \mforall{}L2:T  List
          (||L2||  <  ||[u  /  v]||
          {}\mRightarrow{}  (\mforall{}L3:T  List
                      (permutation(T;L2;L3)  {}\mRightarrow{}  permutation(T;remove-repeats(eq;L2);remove-repeats(eq;L3)))))
7.  L2  :  T  List
8.  permutation(T;[u  /  v];L2)
9.  as  :  T  List
10.  bs  :  T  List
11.  permutation(T;v;as  @  bs)
12.  permutation(T;remove-repeats(eq;v);remove-repeats(eq;as  @  bs))
\mvdash{}  permutation(T;[u  /  filter(\mlambda{}x.(\mneg{}\msubb{}(eq  x  u));remove-repeats(eq;v))];remove-repeats(eq;as  @  [u  /  bs]))


By


Latex:
TACTIC:Assert  \mkleeneopen{}permutation(T;[u  /  filter(\mlambda{}x.(\mneg{}\msubb{}(eq  x  u));remove-repeats(eq;v))];
                                                      [u  /  filter(\mlambda{}x.(\mneg{}\msubb{}(eq  x  u));remove-repeats(eq;as  @  bs))])\mkleeneclose{}\mcdot{}




Home Index