Step
*
1
1
of Lemma
equiv-equipollent-implies-quotient-equipollent
1. [A] : Type
2. [B] : Type
3. E : A ⟶ A ⟶ ℙ
4. A ~ B mod (a1,a2.E[a1;a2])
5. EquivRel(A;x,y.↓E[x;y])
⊢ x,y:A//(↓E[x;y]) ~ B
BY
{ (D -2 THEN ExRepD) }
1
1. [A] : Type
2. [B] : Type
3. E : A ⟶ A ⟶ ℙ
4. f : A ⟶ B
5. Surj(A;B;f)
6. ∀a1,a2:A. ((f a1) = (f a2) ∈ B
⇐⇒ ↓E[a1;a2])
7. EquivRel(A;x,y.↓E[x;y])
⊢ x,y:A//(↓E[x;y]) ~ B
Latex:
Latex:
1. [A] : Type
2. [B] : Type
3. E : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
4. A \msim{} B mod (a1,a2.E[a1;a2])
5. EquivRel(A;x,y.\mdownarrow{}E[x;y])
\mvdash{} x,y:A//(\mdownarrow{}E[x;y]) \msim{} B
By
Latex:
(D -2 THEN ExRepD)
Home
Index