Step
*
1
of Lemma
tuple-type-concat
1. [T] : Type
2. f : T ⟶ (Type List)
3. u : T
4. v : T List
5. tuple-type(map(λi.tuple-type(f i);v)) ~ tuple-type(concat(map(f;v)))
⊢ if null(map(λi.tuple-type(f i);v))
then tuple-type(f u)
else tuple-type(f u) × tuple-type(map(λi.tuple-type(f i);v))
fi ~ tuple-type(concat([f u / map(f;v)]))
BY
{ TACTIC:(Unfold `concat` 0 THEN Reduce 0 THEN Fold `concat` 0) }
1
1. [T] : Type
2. f : T ⟶ (Type List)
3. u : T
4. v : T List
5. tuple-type(map(λi.tuple-type(f i);v)) ~ tuple-type(concat(map(f;v)))
⊢ if null(map(λi.tuple-type(f i);v))
then tuple-type(f u)
else tuple-type(f u) × tuple-type(map(λi.tuple-type(f i);v))
fi ~ tuple-type((f u) @ concat(map(f;v)))
Latex:
Latex:
1. [T] : Type
2. f : T {}\mrightarrow{} (Type List)
3. u : T
4. v : T List
5. tuple-type(map(\mlambda{}i.tuple-type(f i);v)) \msim{} tuple-type(concat(map(f;v)))
\mvdash{} if null(map(\mlambda{}i.tuple-type(f i);v))
then tuple-type(f u)
else tuple-type(f u) \mtimes{} tuple-type(map(\mlambda{}i.tuple-type(f i);v))
fi \msim{} tuple-type(concat([f u / map(f;v)]))
By
Latex:
TACTIC:(Unfold `concat` 0 THEN Reduce 0 THEN Fold `concat` 0)
Home
Index