Nuprl Lemma : tuple-type-concat
∀[T:Type]. ∀f:T ⟶ (Type List). ∀L:T List.  tuple-type(map(λi.tuple-type(f i);L)) ~ tuple-type(concat(map(f;L)))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
tuple-type: tuple-type(L), 
concat: concat(ll), 
map: map(f;as), 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
concat: concat(ll), 
top: Top, 
implies: P ⇒ Q, 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
not: ¬A, 
false: False, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
cons: [a / b], 
subtype_rel: A ⊆r B, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
sq_type: SQType(T), 
guard: {T}, 
true: True
Lemmas referenced : 
tupletype_cons_lemma, 
map_cons_lemma, 
unit_wf2, 
equipollent_same, 
reduce_nil_lemma, 
tupletype_nil_lemma, 
istype-void, 
map_nil_lemma, 
list_wf, 
concat_wf, 
istype-universe, 
map_wf, 
tuple-type_wf, 
equipollent_wf, 
list_induction, 
reduce_cons_lemma, 
null_wf, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
istype-assert, 
length_wf, 
length_of_nil_lemma, 
length-map, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_null, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
list-cases, 
product_subtype_list, 
subtype_rel_list, 
top_wf, 
append-nil, 
equipollent_weakening_ext-eq, 
ext-eq_weakening, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
subtype_base_sq, 
int_subtype_base, 
append_wf, 
tuple-type-append-equipollent, 
equipollent_functionality_wrt_equipollent, 
product_functionality_wrt_equipollent_right
Rules used in proof : 
Error :functionIsType, 
Error :inhabitedIsType, 
rename, 
voidElimination, 
Error :isect_memberEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
Error :universeIsType, 
because_Cache, 
hypothesis, 
applyEquality, 
universeEquality, 
cumulativity, 
instantiate, 
Error :lambdaEquality_alt, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
Error :equalityIstype, 
sqequalBase, 
applyLambdaEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
promote_hyp, 
hypothesis_subsumption, 
natural_numberEquality, 
intEquality, 
productEquality
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  (Type  List).  \mforall{}L:T  List.
        tuple-type(map(\mlambda{}i.tuple-type(f  i);L))  \msim{}  tuple-type(concat(map(f;L)))
Date html generated:
2019_06_20-PM-02_19_27
Last ObjectModification:
2019_01_12-AM-11_44_15
Theory : equipollence!!cardinality!
Home
Index