Nuprl Lemma : tuple-type-concat

[T:Type]. ∀f:T ⟶ (Type List). ∀L:T List.  tuple-type(map(λi.tuple-type(f i);L)) tuple-type(concat(map(f;L)))


Proof




Definitions occuring in Statement :  equipollent: B tuple-type: tuple-type(L) concat: concat(ll) map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  concat: concat(ll) top: Top implies:  Q so_apply: x[s] prop: so_lambda: λ2x.t[x] member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] not: ¬A false: False bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q cons: [a b] subtype_rel: A ⊆B so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] sq_type: SQType(T) guard: {T} true: True
Lemmas referenced :  tupletype_cons_lemma map_cons_lemma unit_wf2 equipollent_same reduce_nil_lemma tupletype_nil_lemma istype-void map_nil_lemma list_wf concat_wf istype-universe map_wf tuple-type_wf equipollent_wf list_induction reduce_cons_lemma null_wf equal-wf-T-base bool_wf assert_wf bnot_wf not_wf istype-assert length_wf length_of_nil_lemma length-map uiff_transitivity eqtt_to_assert assert_of_null iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot list-cases product_subtype_list subtype_rel_list top_wf append-nil equipollent_weakening_ext-eq ext-eq_weakening list_ind_nil_lemma list_ind_cons_lemma subtype_base_sq int_subtype_base append_wf tuple-type-append-equipollent equipollent_functionality_wrt_equipollent product_functionality_wrt_equipollent_right
Rules used in proof :  Error :functionIsType,  Error :inhabitedIsType,  rename voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination independent_functionElimination Error :universeIsType,  because_Cache hypothesis applyEquality universeEquality cumulativity instantiate Error :lambdaEquality_alt,  sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution equalityTransitivity equalitySymmetry baseClosed Error :equalityIstype,  sqequalBase applyLambdaEquality unionElimination equalityElimination productElimination independent_isectElimination independent_pairFormation promote_hyp hypothesis_subsumption natural_numberEquality intEquality productEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  (Type  List).  \mforall{}L:T  List.
        tuple-type(map(\mlambda{}i.tuple-type(f  i);L))  \msim{}  tuple-type(concat(map(f;L)))



Date html generated: 2019_06_20-PM-02_19_27
Last ObjectModification: 2019_01_12-AM-11_44_15

Theory : equipollence!!cardinality!


Home Index