Nuprl Lemma : concat_wf

[T:Type]. ∀[ll:T List List].  (concat(ll) ∈ List)


Proof




Definitions occuring in Statement :  concat: concat(ll) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  concat: concat(ll) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  reduce_wf list_wf append_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].    (concat(ll)  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_30_00
Last ObjectModification: 2015_12_26-PM-00_39_48

Theory : list_0


Home Index