Step
*
3
of Lemma
tree-secures_functionality
1. T : Type@i'
2. f : T ⟶ wfd-tree(T)@i
3. ∀b:T
∀[A,B:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ].
((∀n:ℕ. ∀s:ℕn ⟶ T. ((A n s)
⇒ (B n s)))
⇒ tree-secures(T;A;f b)
⇒ tree-secures(T;B;f b))@i'
4. [A] : n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ
5. [B] : n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ
6. ∀n:ℕ. ∀s:ℕn ⟶ T. ((A n s)
⇒ (B n s))@i
7. tree-secures(T;A;Wsup(ff;f))@i
⊢ tree-secures(T;B;Wsup(ff;f))
BY
{ ((RecUnfold `tree-secures` 0 THEN Unfold `Wsup` 0 THEN Reduce 0)
THEN RecUnfold `tree-secures` (-1)
THEN Unfold `Wsup` (-1)
THEN Reduce (-1)
THEN Auto
THEN InstHyp [⌜x⌝;⌜A[x]⌝;⌜B[x]⌝] 3⋅
THEN Auto) }
1
1. T : Type@i'
2. f : T ⟶ wfd-tree(T)@i
3. ∀b:T
∀[A,B:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ].
((∀n:ℕ. ∀s:ℕn ⟶ T. ((A n s)
⇒ (B n s)))
⇒ tree-secures(T;A;f b)
⇒ tree-secures(T;B;f b))@i'
4. [A] : n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ
5. [B] : n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ
6. ∀n:ℕ. ∀s:ℕn ⟶ T. ((A n s)
⇒ (B n s))@i
7. ∀x:T. tree-secures(T;A[x];f x)@i
8. x : T@i
9. n : ℕ@i
10. s : ℕn ⟶ T@i
11. A[x] n s@i
⊢ B[x] n s
Latex:
Latex:
1. T : Type@i'
2. f : T {}\mrightarrow{} wfd-tree(T)@i
3. \mforall{}b:T
\mforall{}[A,B:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} \mBbbP{}].
((\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} T. ((A n s) {}\mRightarrow{} (B n s)))
{}\mRightarrow{} tree-secures(T;A;f b)
{}\mRightarrow{} tree-secures(T;B;f b))@i'
4. [A] : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} \mBbbP{}
5. [B] : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} \mBbbP{}
6. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} T. ((A n s) {}\mRightarrow{} (B n s))@i
7. tree-secures(T;A;Wsup(ff;f))@i
\mvdash{} tree-secures(T;B;Wsup(ff;f))
By
Latex:
((RecUnfold `tree-secures` 0 THEN Unfold `Wsup` 0 THEN Reduce 0)
THEN RecUnfold `tree-secures` (-1)
THEN Unfold `Wsup` (-1)
THEN Reduce (-1)
THEN Auto
THEN InstHyp [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}A[x]\mkleeneclose{};\mkleeneopen{}B[x]\mkleeneclose{}] 3\mcdot{}
THEN Auto)
Home
Index