Nuprl Lemma : tree-secures_functionality

T:Type. ∀p:wfd-tree(T).
  ∀[A,B:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ].
    ((∀n:ℕ. ∀s:ℕn ⟶ T.  ((A s)  (B s)))  tree-secures(T;A;p)  tree-secures(T;B;p))


Proof




Definitions occuring in Statement :  tree-secures: tree-secures(T;A;p) wfd-tree: wfd-tree(T) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: prop: implies:  Q so_apply: x[s] guard: {T} tree-secures: tree-secures(T;A;p) Wsup: Wsup(a;b) ifthenelse: if then else fi  btrue: tt le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A wfd-tree: wfd-tree(T) bfalse: ff predicate-or-shift: A[x] predicate-shift: A_x or: P ∨ Q uimplies: supposing a ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  bfalse_wf seq-single_wf int_formula_prop_and_lemma intformand_wf or_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermAdd_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_subtype subtype_rel_dep_function seq-append_wf predicate-or-shift_wf void_wf btrue_wf ifthenelse_wf bool_wf Wsup_wf le_wf false_wf wfd-tree_wf tree-secures_wf all_wf int_seg_wf nat_wf uall_wf wfd-tree-induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality functionEquality hypothesis applyEquality universeEquality natural_numberEquality setElimination rename because_Cache independent_functionElimination isect_memberFormation dependent_set_memberEquality independent_pairFormation voidEquality functionExtensionality voidElimination unionElimination inlFormation addEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality computeAll inrFormation

Latex:
\mforall{}T:Type.  \mforall{}p:wfd-tree(T).
    \mforall{}[A,B:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    ((A  n  s)  {}\mRightarrow{}  (B  n  s)))  {}\mRightarrow{}  tree-secures(T;A;p)  {}\mRightarrow{}  tree-secures(T;B;p))



Date html generated: 2016_05_14-PM-04_07_26
Last ObjectModification: 2016_01_14-PM-10_58_15

Theory : fan-theorem


Home Index