Nuprl Lemma : tree-secures_functionality
∀T:Type. ∀p:wfd-tree(T).
  ∀[A,B:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ].
    ((∀n:ℕ. ∀s:ℕn ⟶ T.  ((A n s) 
⇒ (B n s))) 
⇒ tree-secures(T;A;p) 
⇒ tree-secures(T;B;p))
Proof
Definitions occuring in Statement : 
tree-secures: tree-secures(T;A;p)
, 
wfd-tree: wfd-tree(T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
guard: {T}
, 
tree-secures: tree-secures(T;A;p)
, 
Wsup: Wsup(a;b)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
wfd-tree: wfd-tree(T)
, 
bfalse: ff
, 
predicate-or-shift: A[x]
, 
predicate-shift: A_x
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
bfalse_wf, 
seq-single_wf, 
int_formula_prop_and_lemma, 
intformand_wf, 
or_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
int_seg_subtype, 
subtype_rel_dep_function, 
seq-append_wf, 
predicate-or-shift_wf, 
void_wf, 
btrue_wf, 
ifthenelse_wf, 
bool_wf, 
Wsup_wf, 
le_wf, 
false_wf, 
wfd-tree_wf, 
tree-secures_wf, 
all_wf, 
int_seg_wf, 
nat_wf, 
uall_wf, 
wfd-tree-induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
hypothesis, 
applyEquality, 
universeEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
isect_memberFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
voidEquality, 
functionExtensionality, 
voidElimination, 
unionElimination, 
inlFormation, 
addEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
computeAll, 
inrFormation
Latex:
\mforall{}T:Type.  \mforall{}p:wfd-tree(T).
    \mforall{}[A,B:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    ((A  n  s)  {}\mRightarrow{}  (B  n  s)))  {}\mRightarrow{}  tree-secures(T;A;p)  {}\mRightarrow{}  tree-secures(T;B;p))
Date html generated:
2016_05_14-PM-04_07_26
Last ObjectModification:
2016_01_14-PM-10_58_15
Theory : fan-theorem
Home
Index