Nuprl Lemma : seq-single_wf
∀[T:Type]. ∀[t:T].  (seq-single(t) ∈ ℕ1 ⟶ T)
Proof
Definitions occuring in Statement : 
seq-single: seq-single(t)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
seq-single: seq-single(t)
, 
int_seg: {i..j-}
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
int_seg_wf, 
le-add-cancel2, 
add-associates, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
less-iff-le, 
le-add-cancel, 
add-zero, 
zero-add, 
add_functionality_wrt_le, 
sq_stable__le, 
not-equal-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
int_eqEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lemma_by_obid, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination, 
unionElimination, 
isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addEquality, 
voidElimination, 
minusEquality, 
applyEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    (seq-single(t)  \mmember{}  \mBbbN{}1  {}\mrightarrow{}  T)
Date html generated:
2016_05_13-PM-03_48_25
Last ObjectModification:
2016_01_14-PM-07_00_34
Theory : bar-induction
Home
Index