Nuprl Lemma : seq-single_wf

[T:Type]. ∀[t:T].  (seq-single(t) ∈ ℕ1 ⟶ T)


Proof




Definitions occuring in Statement :  seq-single: seq-single(t) int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-single: seq-single(t) int_seg: {i..j-} false: False implies:  Q not: ¬A all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q sq_stable: SqStable(P) lelt: i ≤ j < k squash: T le: A ≤ B less_than': less_than'(a;b) true: True subtract: m subtype_rel: A ⊆B top: Top
Lemmas referenced :  int_seg_wf le-add-cancel2 add-associates minus-zero minus-add add-commutes condition-implies-le less-iff-le le-add-cancel add-zero zero-add add_functionality_wrt_le sq_stable__le not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality int_eqEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis natural_numberEquality lemma_by_obid dependent_functionElimination productElimination independent_isectElimination unionElimination isectElimination independent_functionElimination imageMemberEquality baseClosed imageElimination addEquality voidElimination minusEquality applyEquality isect_memberEquality voidEquality intEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    (seq-single(t)  \mmember{}  \mBbbN{}1  {}\mrightarrow{}  T)



Date html generated: 2016_05_13-PM-03_48_25
Last ObjectModification: 2016_01_14-PM-07_00_34

Theory : bar-induction


Home Index