Step * 2 1 1 2 1 2 of Lemma twkl!-implies-dfan


1. Type
2. ∃k:ℕ~ ℕk
3. WKL!(T)
4. (T List) ⟶ ℙ
5. ∀t:T List. Dec(s t)
6. ∀f:ℕ ⟶ T. ∃n:ℕ(s map(f;upto(n)))
7. ¬(s [])
8. ∀a,b:ℕ.  ((a ≤ b)  tree-big(T;upwd-closure(T;s);a)  tree-big(T;upwd-closure(T;s);b))
9. ∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
     ∃k:ℕn. ((¬tree-big(T;upwd-closure(T;s);k)) ∧ tree-big(T;upwd-closure(T;s);k 1))
10. ∀n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)} . ∃as:T List. ((||as|| n ∈ ℤ) ∧ (upwd-closure(T;s) as)))
11. nb n:{n:ℕtree-big(T;upwd-closure(T;s);n)}  ⟶ ℕn
12. ∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
      ((¬tree-big(T;upwd-closure(T;s);nb n)) ∧ tree-big(T;upwd-closure(T;s);(nb n) 1))
13. n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)}  ⟶ (T List)
14. ∀n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)} ((||u n|| n ∈ ℤ) ∧ (upwd-closure(T;s) (u n))))
⊢ (∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
     (||u (nb n)|| < n ∧ (upwd-closure(T;s) (u (nb n)))) ∧ tree-big(T;upwd-closure(T;s);||u (nb n)|| 1)))
∧ (∀n,m:{n:ℕtree-big(T;upwd-closure(T;s);n)} .  ((u (nb n)) (u (nb m)) ∈ (T List)))
BY
BetterSplitAndConcl }

1
1. Type
2. ∃k:ℕ~ ℕk
3. WKL!(T)
4. (T List) ⟶ ℙ
5. ∀t:T List. Dec(s t)
6. ∀f:ℕ ⟶ T. ∃n:ℕ(s map(f;upto(n)))
7. ¬(s [])
8. ∀a,b:ℕ.  ((a ≤ b)  tree-big(T;upwd-closure(T;s);a)  tree-big(T;upwd-closure(T;s);b))
9. ∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
     ∃k:ℕn. ((¬tree-big(T;upwd-closure(T;s);k)) ∧ tree-big(T;upwd-closure(T;s);k 1))
10. ∀n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)} . ∃as:T List. ((||as|| n ∈ ℤ) ∧ (upwd-closure(T;s) as)))
11. nb n:{n:ℕtree-big(T;upwd-closure(T;s);n)}  ⟶ ℕn
12. ∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
      ((¬tree-big(T;upwd-closure(T;s);nb n)) ∧ tree-big(T;upwd-closure(T;s);(nb n) 1))
13. n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)}  ⟶ (T List)
14. ∀n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)} ((||u n|| n ∈ ℤ) ∧ (upwd-closure(T;s) (u n))))
⊢ ∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
    (||u (nb n)|| < n ∧ (upwd-closure(T;s) (u (nb n)))) ∧ tree-big(T;upwd-closure(T;s);||u (nb n)|| 1))

2
1. Type
2. ∃k:ℕ~ ℕk
3. WKL!(T)
4. (T List) ⟶ ℙ
5. ∀t:T List. Dec(s t)
6. ∀f:ℕ ⟶ T. ∃n:ℕ(s map(f;upto(n)))
7. ¬(s [])
8. ∀a,b:ℕ.  ((a ≤ b)  tree-big(T;upwd-closure(T;s);a)  tree-big(T;upwd-closure(T;s);b))
9. ∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
     ∃k:ℕn. ((¬tree-big(T;upwd-closure(T;s);k)) ∧ tree-big(T;upwd-closure(T;s);k 1))
10. ∀n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)} . ∃as:T List. ((||as|| n ∈ ℤ) ∧ (upwd-closure(T;s) as)))
11. nb n:{n:ℕtree-big(T;upwd-closure(T;s);n)}  ⟶ ℕn
12. ∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
      ((¬tree-big(T;upwd-closure(T;s);nb n)) ∧ tree-big(T;upwd-closure(T;s);(nb n) 1))
13. n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)}  ⟶ (T List)
14. ∀n:{n:ℕ| ¬tree-big(T;upwd-closure(T;s);n)} ((||u n|| n ∈ ℤ) ∧ (upwd-closure(T;s) (u n))))
15. ∀n:{n:ℕtree-big(T;upwd-closure(T;s);n)} 
      (||u (nb n)|| < n ∧ (upwd-closure(T;s) (u (nb n)))) ∧ tree-big(T;upwd-closure(T;s);||u (nb n)|| 1))
⊢ ∀n,m:{n:ℕtree-big(T;upwd-closure(T;s);n)} .  ((u (nb n)) (u (nb m)) ∈ (T List))


Latex:


Latex:

1.  T  :  Type
2.  \mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k
3.  WKL!(T)
4.  s  :  (T  List)  {}\mrightarrow{}  \mBbbP{}
5.  \mforall{}t:T  List.  Dec(s  t)
6.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}n:\mBbbN{}.  (s  map(f;upto(n)))
7.  \mneg{}(s  [])
8.  \mforall{}a,b:\mBbbN{}.    ((a  \mleq{}  b)  {}\mRightarrow{}  tree-big(T;upwd-closure(T;s);a)  {}\mRightarrow{}  tree-big(T;upwd-closure(T;s);b))
9.  \mforall{}n:\{n:\mBbbN{}|  tree-big(T;upwd-closure(T;s);n)\} 
          \mexists{}k:\mBbbN{}n.  ((\mneg{}tree-big(T;upwd-closure(T;s);k))  \mwedge{}  tree-big(T;upwd-closure(T;s);k  +  1))
10.  \mforall{}n:\{n:\mBbbN{}|  \mneg{}tree-big(T;upwd-closure(T;s);n)\} 
            \mexists{}as:T  List.  ((||as||  =  n)  \mwedge{}  (\mneg{}(upwd-closure(T;s)  as)))
11.  nb  :  n:\{n:\mBbbN{}|  tree-big(T;upwd-closure(T;s);n)\}    {}\mrightarrow{}  \mBbbN{}n
12.  \mforall{}n:\{n:\mBbbN{}|  tree-big(T;upwd-closure(T;s);n)\} 
            ((\mneg{}tree-big(T;upwd-closure(T;s);nb  n))  \mwedge{}  tree-big(T;upwd-closure(T;s);(nb  n)  +  1))
13.  u  :  n:\{n:\mBbbN{}|  \mneg{}tree-big(T;upwd-closure(T;s);n)\}    {}\mrightarrow{}  (T  List)
14.  \mforall{}n:\{n:\mBbbN{}|  \mneg{}tree-big(T;upwd-closure(T;s);n)\}  .  ((||u  n||  =  n)  \mwedge{}  (\mneg{}(upwd-closure(T;s)  (u  n))))
\mvdash{}  (\mforall{}n:\{n:\mBbbN{}|  tree-big(T;upwd-closure(T;s);n)\} 
          (||u  (nb  n)||  <  n
          \mwedge{}  (\mneg{}(upwd-closure(T;s)  (u  (nb  n))))
          \mwedge{}  tree-big(T;upwd-closure(T;s);||u  (nb  n)||  +  1)))
\mwedge{}  (\mforall{}n,m:\{n:\mBbbN{}|  tree-big(T;upwd-closure(T;s);n)\}  .    ((u  (nb  n))  =  (u  (nb  m))))


By


Latex:
BetterSplitAndConcl




Home Index