Step
*
2
of Lemma
fset-ac-glb-is-glb
1. T : Type
2. eq : EqDecider(T)
3. ac1 : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
4. ac2 : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
⊢ fset-ac-le(eq;fset-ac-glb(eq;ac1;ac2);ac2)
BY
{ (Unfolds ``fset-ac-glb fset-ac-le`` 0
   THEN (InstLemma `fset-all-iff` [⌜fset(T)⌝;⌜deq-fset(eq)⌝]⋅ THENA Auto)
   THEN RWO "-1" 0
   THEN Auto
   THEN Thin (-3)
   THEN (RWO "assert-fset-null" 0 THENA Auto)
   THEN (RWO "member-fset-minimals" (-1) THENA Auto)
   THEN D -1) }
1
1. T : Type
2. eq : EqDecider(T)
3. ac1 : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
4. ac2 : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} 
5. x : fset(T)
6. x ∈ f-union(deq-fset(eq);deq-fset(eq);ac1;as.λbs.as ⋃ bs"(ac2))
7. fset-all(f-union(deq-fset(eq);deq-fset(eq);ac1;as.λbs.as ⋃ bs"(ac2));ys.¬bf-proper-subset-dec(eq;ys;x))
⊢ ¬({y ∈ ac2 | deq-f-subset(eq) y x} = {} ∈ fset(fset(T)))
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  ac1  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
4.  ac2  :  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\} 
\mvdash{}  fset-ac-le(eq;fset-ac-glb(eq;ac1;ac2);ac2)
By
Latex:
(Unfolds  ``fset-ac-glb  fset-ac-le``  0
  THEN  (InstLemma  `fset-all-iff`  [\mkleeneopen{}fset(T)\mkleeneclose{};\mkleeneopen{}deq-fset(eq)\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  RWO  "-1"  0
  THEN  Auto
  THEN  Thin  (-3)
  THEN  (RWO  "assert-fset-null"  0  THENA  Auto)
  THEN  (RWO  "member-fset-minimals"  (-1)  THENA  Auto)
  THEN  D  -1)
Home
Index