Step
*
of Lemma
fset-closure-unique
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[r:T ⟶ ℕ]. ∀[fs:(T ⟶ T) List]. ∀[s,c1,c2:fset(T)].
(c1 = c2 ∈ fset(T)) supposing ((c2 = fs closure of s) and (c1 = fs closure of s))
BY
{ (Auto THEN Using [`eq',⌜eq⌝] (BLemma `f-subset_antisymmetry`)⋅ THEN Auto THEN RepeatFor 2 (BackThruSomeHyp')) }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[r:T {}\mrightarrow{} \mBbbN{}]. \mforall{}[fs:(T {}\mrightarrow{} T) List]. \mforall{}[s,c1,c2:fset(T)].
(c1 = c2) supposing ((c2 = fs closure of s) and (c1 = fs closure of s))
By
Latex:
(Auto
THEN Using [`eq',\mkleeneopen{}eq\mkleeneclose{}] (BLemma `f-subset\_antisymmetry`)\mcdot{}
THEN Auto
THEN RepeatFor 2 (BackThruSomeHyp'))
Home
Index