Nuprl Lemma : fset-closure-unique

[T:Type]. ∀[eq:EqDecider(T)]. ∀[r:T ⟶ ℕ]. ∀[fs:(T ⟶ T) List]. ∀[s,c1,c2:fset(T)].
  (c1 c2 ∈ fset(T)) supposing ((c2 fs closure of s) and (c1 fs closure of s))


Proof




Definitions occuring in Statement :  fset-closure: (c fs closure of s) fset: fset(T) list: List deq: EqDecider(T) nat: uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: guard: {T} fset-closure: (c fs closure of s) and: P ∧ Q all: x:A. B[x] implies:  Q
Lemmas referenced :  f-subset_antisymmetry fset-closure_wf fset_wf list_wf nat_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality productElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[r:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[fs:(T  {}\mrightarrow{}  T)  List].  \mforall{}[s,c1,c2:fset(T)].
    (c1  =  c2)  supposing  ((c2  =  fs  closure  of  s)  and  (c1  =  fs  closure  of  s))



Date html generated: 2016_05_14-PM-03_45_33
Last ObjectModification: 2015_12_26-PM-06_37_47

Theory : finite!sets


Home Index