Nuprl Lemma : fset-closure-unique
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[r:T ⟶ ℕ]. ∀[fs:(T ⟶ T) List]. ∀[s,c1,c2:fset(T)].
  (c1 = c2 ∈ fset(T)) supposing ((c2 = fs closure of s) and (c1 = fs closure of s))
Proof
Definitions occuring in Statement : 
fset-closure: (c = fs closure of s)
, 
fset: fset(T)
, 
list: T List
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
, 
fset-closure: (c = fs closure of s)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
f-subset_antisymmetry, 
fset-closure_wf, 
fset_wf, 
list_wf, 
nat_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[r:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[fs:(T  {}\mrightarrow{}  T)  List].  \mforall{}[s,c1,c2:fset(T)].
    (c1  =  c2)  supposing  ((c2  =  fs  closure  of  s)  and  (c1  =  fs  closure  of  s))
Date html generated:
2016_05_14-PM-03_45_33
Last ObjectModification:
2015_12_26-PM-06_37_47
Theory : finite!sets
Home
Index