Nuprl Lemma : fset-closure_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[fs:(T ⟶ T) List]. ∀[s,c:fset(T)].  ((c fs closure of s) ∈ ℙ)


Proof




Definitions occuring in Statement :  fset-closure: (c fs closure of s) fset: fset(T) list: List deq: EqDecider(T) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-closure: (c fs closure of s) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  and_wf f-subset_wf fset-closed_wf all_wf fset_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[fs:(T  {}\mrightarrow{}  T)  List].  \mforall{}[s,c:fset(T)].    ((c  =  fs  closure  of  s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_44_52
Last ObjectModification: 2015_12_26-PM-06_38_03

Theory : finite!sets


Home Index