Nuprl Lemma : fset-closure_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[fs:(T ⟶ T) List]. ∀[s,c:fset(T)].  ((c = fs closure of s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
fset-closure: (c = fs closure of s)
, 
fset: fset(T)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
fset-closure: (c = fs closure of s)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
f-subset_wf, 
fset-closed_wf, 
all_wf, 
fset_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[fs:(T  {}\mrightarrow{}  T)  List].  \mforall{}[s,c:fset(T)].    ((c  =  fs  closure  of  s)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_44_52
Last ObjectModification:
2015_12_26-PM-06_38_03
Theory : finite!sets
Home
Index