Step
*
1
2
of Lemma
Dickson's lemma
1. p : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ. ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. A : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p = 0 ∈ ℤ)
⊢ ∃j:ℕ. ∃i:ℕj. ∀k:ℕp. (A[k;i] ≤ A[k;j])
BY
{ Assert ⌜∀n,m:ℕ. ∃i:ℕ. (m < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (n ≤ A[0;i])))⌝⋅ }
1
.....assertion.....
1. p : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ. ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. A : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p = 0 ∈ ℤ)
⊢ ∀n,m:ℕ. ∃i:ℕ. (m < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (n ≤ A[0;i])))
2
1. p : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ. ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. A : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p = 0 ∈ ℤ)
5. ∀n,m:ℕ. ∃i:ℕ. (m < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (n ≤ A[0;i])))
⊢ ∃j:ℕ. ∃i:ℕj. ∀k:ℕp. (A[k;i] ≤ A[k;j])
Latex:
Latex:
1. p : \mBbbN{}
2. \mforall{}p1:\mBbbN{}p. \mforall{}A:\mBbbN{}p1 {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbN{}. \mexists{}j:\mBbbN{}. \mexists{}i:\mBbbN{}j. \mforall{}k:\mBbbN{}p1. (A[k;i] \mleq{} A[k;j])
3. A : \mBbbN{}p {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbN{}
4. \mneg{}(p = 0)
\mvdash{} \mexists{}j:\mBbbN{}. \mexists{}i:\mBbbN{}j. \mforall{}k:\mBbbN{}p. (A[k;i] \mleq{} A[k;j])
By
Latex:
Assert \mkleeneopen{}\mforall{}n,m:\mBbbN{}. \mexists{}i:\mBbbN{}. (m < i \mwedge{} ((\mexists{}b:\mBbbN{}. \mexists{}a:\mBbbN{}b. \mforall{}k:\mBbbN{}p. (A[k;a] \mleq{} A[k;b])) \mvee{} (n \mleq{} A[0;i])))\mkleeneclose{}\mcdot{}
Home
Index