Nuprl Lemma : Dickson's lemma
∀p:ℕ. ∀A:ℕp ⟶ ℕ ⟶ ℕ.  ∃j:ℕ. ∃i:ℕj. ∀k:ℕp. (A[k;i] ≤ A[k;j])
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
top: Top
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
cand: A c∧ B
, 
istype: istype(T)
, 
ge: i ≥ j 
, 
pi1: fst(t)
, 
compose: f o g
, 
nat_plus: ℕ+
Lemmas referenced : 
int_seg_wf, 
le_wf, 
int_seg_subtype_nat, 
false_wf, 
nat_wf, 
istype-nat, 
natrec_wf, 
all_wf, 
exists_wf, 
subtype_rel_function, 
subtype_rel_self, 
decidable__int_equal, 
subtype_base_sq, 
int_subtype_base, 
lelt_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
less_than_wf, 
subtract_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
istype-void, 
istype-int, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
primrec-wf2, 
or_wf, 
decidable__le, 
not-le-2, 
sq_stable__le, 
minus-one-mul, 
minus-one-mul-top, 
add-swap, 
add-mul-special, 
zero-mul, 
set_subtype_base, 
not-equal-implies-less, 
nat_properties, 
fun_exp_wf, 
fun_exp1_lemma, 
fun_exp-increasing, 
less-iff-le, 
le-add-cancel2, 
fun_exp_add1, 
minus-minus, 
le-add-cancel-alt, 
add-member-int_seg2, 
less_than_transitivity2, 
le_weakening2, 
less_than'_wf, 
int_seg_properties, 
subtract-add-cancel, 
nat_plus_properties, 
primrec-wf-nat-plus, 
nat_plus_wf, 
le_reflexive, 
one-mul, 
two-mul, 
mul-distributes-right, 
omega-shadow, 
mul-distributes, 
mul-associates, 
mul-commutes, 
mul-swap, 
add_nat_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :functionIsType, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
sqequalRule, 
Error :productIsType, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
functionEquality, 
functionExtensionality, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
productElimination, 
voidElimination, 
Error :unionIsType, 
addEquality, 
Error :isect_memberEquality_alt, 
minusEquality, 
Error :setIsType, 
productEquality, 
imageElimination, 
multiplyEquality, 
Error :inrFormation_alt, 
sqequalIntensionalEquality, 
Error :equalityIsType1, 
promote_hyp, 
Error :inlFormation_alt, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}p:\mBbbN{}.  \mforall{}A:\mBbbN{}p  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  \mforall{}k:\mBbbN{}p.  (A[k;i]  \mleq{}  A[k;j])
Date html generated:
2019_06_20-PM-00_27_32
Last ObjectModification:
2018_09_29-PM-09_51_22
Theory : fun_1
Home
Index