Nuprl Lemma : Dickson's lemma

p:ℕ. ∀A:ℕp ⟶ ℕ ⟶ ℕ.  ∃j:ℕ. ∃i:ℕj. ∀k:ℕp. (A[k;i] ≤ A[k;j])


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: so_apply: x[s1;s2] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: int_seg: {i..j-} exists: x:A. B[x] so_apply: x[s1;s2] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} lelt: i ≤ j < k less_than: a < b squash: T true: True iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) top: Top subtract: m sq_stable: SqStable(P) cand: c∧ B istype: istype(T) ge: i ≥  pi1: fst(t) compose: g nat_plus: +
Lemmas referenced :  int_seg_wf le_wf int_seg_subtype_nat false_wf nat_wf istype-nat natrec_wf all_wf exists_wf subtype_rel_function subtype_rel_self decidable__int_equal subtype_base_sq int_subtype_base lelt_wf less_than_transitivity1 less_than_irreflexivity less_than_wf subtract_wf decidable__lt istype-false not-lt-2 not-equal-2 add_functionality_wrt_le add-associates istype-void istype-int add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero primrec-wf2 or_wf decidable__le not-le-2 sq_stable__le minus-one-mul minus-one-mul-top add-swap add-mul-special zero-mul set_subtype_base not-equal-implies-less nat_properties fun_exp_wf fun_exp1_lemma fun_exp-increasing less-iff-le le-add-cancel2 fun_exp_add1 minus-minus le-add-cancel-alt add-member-int_seg2 less_than_transitivity2 le_weakening2 less_than'_wf int_seg_properties subtract-add-cancel nat_plus_properties primrec-wf-nat-plus nat_plus_wf le_reflexive one-mul two-mul mul-distributes-right omega-shadow mul-distributes mul-associates mul-commutes mul-swap add_nat_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :functionIsType,  Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis Error :inhabitedIsType,  sqequalRule Error :productIsType,  because_Cache applyEquality independent_isectElimination independent_pairFormation Error :lambdaEquality_alt,  functionEquality functionExtensionality dependent_functionElimination unionElimination instantiate cumulativity intEquality independent_functionElimination Error :dependent_pairFormation_alt,  Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productElimination voidElimination Error :unionIsType,  addEquality Error :isect_memberEquality_alt,  minusEquality Error :setIsType,  productEquality imageElimination multiplyEquality Error :inrFormation_alt,  sqequalIntensionalEquality Error :equalityIsType1,  promote_hyp Error :inlFormation_alt,  independent_pairEquality axiomEquality

Latex:
\mforall{}p:\mBbbN{}.  \mforall{}A:\mBbbN{}p  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  \mforall{}k:\mBbbN{}p.  (A[k;i]  \mleq{}  A[k;j])



Date html generated: 2019_06_20-PM-00_27_32
Last ObjectModification: 2018_09_29-PM-09_51_22

Theory : fun_1


Home Index