Step * of Lemma cWO-induction-extract-sqequal

λf.fix((λF,t. (f F))) TERMOF{cWO-induction_1-ext:o, \\v:l, i:l}
BY
(RW (SubC (TagC (mk_tag_term 10))) 0
   THEN Unfold `bar_recursion` 0
   THEN Reduce 0
   THEN EqCD
   THEN RW (SubC (SweepUpC UnrollRecursionC)) 0
   THEN Reduce 0
   THEN RepeatFor (EqCD)
   THEN Try (Trivial)) }

1
1. Base
2. Base
⊢ fix((λF,t. (f F))) ~ λs1.(fix((λbar_recursion,n,s. case if (0) < (n)
                                                           then if (n 1)
                                                                then inr p.let _,_ 
                                                                             in Ax) 
                                                                else inl <Ax, Ax>
                                                                fi 
                                                           else (inr p.let _,_ 
                                                                         in Ax) )
                                                   of inl(r) =>
                                                   λa.let _,_ 
                                                      in Ax
                                                   inr(r) =>
                                                   λa.(f 
                                                       s1.(bar_recursion (n 1) m.if m=n  then inl a  else (s m)) 
                                                             s1))))) 
                          
                          m.if m=0  then inl t  else if (m) < (0)  then m  else ⊥
                          s1)


Latex:


Latex:
\mlambda{}f.fix((\mlambda{}F,t.  (f  t  F)))  \msim{}  TERMOF\{cWO-induction\_1-ext:o,  \mbackslash{}\mbackslash{}v:l,  i:l\}


By


Latex:
(RW  (SubC  (TagC  (mk\_tag\_term  10)))  0
  THEN  Unfold  `bar\_recursion`  0
  THEN  Reduce  0
  THEN  EqCD
  THEN  RW  (SubC  (SweepUpC  UnrollRecursionC))  0
  THEN  Reduce  0
  THEN  RepeatFor  2  (EqCD)
  THEN  Try  (Trivial))




Home Index