Step
*
1
of Lemma
cWO-induction-extract-sqequal
1. f : Base
2. t : Base
⊢ fix((λF,t. (f t F))) ~ λs1.(fix((λbar_recursion,n,s. case if (0) < (n)
then if s (n - 1)
then inr (λp.let _,_ = p
in Ax)
else inl <Ax, Ax>
fi
else (inr (λp.let _,_ = p
in Ax) )
of inl(r) =>
λa.let _,_ = r
in Ax
| inr(r) =>
λa.(f a
(λs1.(bar_recursion (n + 1) (λm.if m=n then inl a else (s m))
s1)))))
1
(λm.if m=0 then inl t else if (m) < (0) then 0 m else ⊥)
s1)
BY
{ AbbreviateTerm ⌜λbar_recursion,n,s. case if (0) < (n)
then if s (n - 1) then inr (λp.let _,_ = p in Ax) else inl <Ax, Ax> fi
else (inr (λp.let _,_ = p
in Ax) )
of inl(r) =>
λa.let _,_ = r
in Ax
| inr(r) =>
λa.(f a (λs1.(bar_recursion (n + 1) (λm.if m=n then inl a else (s m)) s1)))⌝ `G'\000C⋅ }
1
1. f : Base
2. t : Base
3. G : Base
4. G ~ λf,bar_recursion,n,s. case if (0) < (n)
then if s (n - 1) then inr (λp.let _,_ = p in Ax) else inl <Ax, Ax> fi
else (inr (λp.let _,_ = p
in Ax) )
of inl(r) =>
λa.let _,_ = r
in Ax
| inr(r) =>
λa.(f a (λs1.(bar_recursion (n + 1) (λm.if m=n then inl a else (s m)) s1)))
⊢ fix((λF,t. (f t F))) ~ λs1.(fix((G f)) 1 (λm.if m=0 then inl t else if (m) < (0) then 0 m else ⊥) s1)
Latex:
Latex:
1. f : Base
2. t : Base
\mvdash{} fix((\mlambda{}F,t. (f t F))) \msim{} \mlambda{}s1.(fix((\mlambda{}bar$_{recursion}$,n,s. case if (0) < (n)
then if s (n - 1)
then inr (\mlambda{}p.let $_{}\000C$,$_{}$ = p
in Ax)
else inl <Ax, Ax>
fi
else (inr (\mlambda{}p.let $_{}\mbackslash{}ff2\000C4,$_{}$ = p
in Ax) )
of inl(r) =>
\mlambda{}a.let $_{}$,$_{\mbackslash{}f\000Cf7d$ = r
in Ax
| inr(r) =>
\mlambda{}a.(f a
(\mlambda{}s1.(bar$_{recursion}$ (n\000C + 1)
(\mlambda{}m.if m=n then inl a else (s m))
s1)))))
1
(\mlambda{}m.if m=0 then inl t else if (m) < (0) then 0 m else \mbot{})
s1)
By
Latex:
AbbreviateTerm \mkleeneopen{}\mlambda{}bar$_{recursion}$,n,s. case if (0) < (n)
then if s (n - 1)
then inr (\mlambda{}p.let $_{}$,$\mbackslash{}ff5\000Cf{}$ = p
in Ax)
else inl <Ax, Ax>
fi
else (inr (\mlambda{}p.let $_{}$,$_\mbackslash{}ff\000C7b}$ = p
in Ax) )
of inl(r) =>
\mlambda{}a.let $_{}$,$_{}$ = r
in Ax
| inr(r) =>
\mlambda{}a.(f a
(\mlambda{}s1.(bar$_{recursion}$ (n + 1)
(\mlambda{}m.if m=n then inl a else (s m))
s1)))\mkleeneclose{} `G'\mcdot{}
Home
Index