Step
*
1
1
1
3
of Lemma
int_is_mono
1. 0 ∈ ℤ
2. v : ℤ
3. 0 < v
4. λx,%. Ax ∈ ∀x:ℤ. ((x ≤ v - 1)
⇒ (v - 1 ≤ x))
5. x : ℤ
6. x ≤ v
⊢ v ≤ x
BY
{ (Assert ⌜∀x:ℤ. ((x ≤ v - 1)
⇒ (v - 1 ≤ x))⌝⋅ THENA (UseWitness ⌜λx,%. Ax⌝⋅ THEN Auto)⋅) }
1
1. 0 ∈ ℤ
2. v : ℤ
3. 0 < v
4. λx,%. Ax ∈ ∀x:ℤ. ((x ≤ v - 1)
⇒ (v - 1 ≤ x))
5. x : ℤ
6. x ≤ v
7. ∀x:ℤ. ((x ≤ v - 1)
⇒ (v - 1 ≤ x))
⊢ v ≤ x
Latex:
Latex:
1. 0 \mmember{} \mBbbZ{}
2. v : \mBbbZ{}
3. 0 < v
4. \mlambda{}x,\%. Ax \mmember{} \mforall{}x:\mBbbZ{}. ((x \mleq{} v - 1) {}\mRightarrow{} (v - 1 \mleq{} x))
5. x : \mBbbZ{}
6. x \mleq{} v
\mvdash{} v \mleq{} x
By
Latex:
(Assert \mkleeneopen{}\mforall{}x:\mBbbZ{}. ((x \mleq{} v - 1) {}\mRightarrow{} (v - 1 \mleq{} x))\mkleeneclose{}\mcdot{} THENA (UseWitness \mkleeneopen{}\mlambda{}x,\%. Ax\mkleeneclose{}\mcdot{} THEN Auto)\mcdot{})
Home
Index