Nuprl Lemma : int_is_mono

[x:ℤ]. ∀[y:Base].  y ≤ supposing x ≤ y


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] int: base: Base sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B has-value: (a)↓ and: P ∧ Q all: x:A. B[x] implies:  Q eq_int: (i =z j) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) false: False guard: {T} bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b not: ¬A
Lemmas referenced :  has-value_wf_base is-exception_wf istype-sqle int_subtype_base istype-base istype-int has-value-monotonic value-type-has-value int-value-type add-subtract-cancel eq_int_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int not-bfalse-sqle-btrue subtract-add-cancel subtract_wf exception-not-value2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut divergentSqle extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis axiomSqleEquality hypothesisEquality applyEquality sqequalRule Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  sqleRule sqleReflexivity baseClosed baseApply closedConclusion independent_isectElimination intEquality addEquality natural_numberEquality callbyvalueAdd productElimination equalityTransitivity equalitySymmetry Error :lambdaFormation_alt,  dependent_functionElimination Error :equalityIstype,  independent_functionElimination intWeakElimination rename Error :lambdaEquality_alt,  axiomEquality unionElimination equalityElimination voidElimination Error :dependent_pairFormation_alt,  promote_hyp instantiate cumulativity exceptionSqequal

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:Base].    y  \mleq{}  x  supposing  x  \mleq{}  y



Date html generated: 2019_06_20-PM-00_25_57
Last ObjectModification: 2018_11_28-AM-10_06_28

Theory : int_1


Home Index