Nuprl Lemma : int_is_mono
∀[x:ℤ]. ∀[y:Base].  y ≤ x supposing x ≤ y
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
eq_int: (i =z j)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
false: False
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
not: ¬A
Lemmas referenced : 
has-value_wf_base, 
is-exception_wf, 
istype-sqle, 
int_subtype_base, 
istype-base, 
istype-int, 
has-value-monotonic, 
value-type-has-value, 
int-value-type, 
add-subtract-cancel, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-bfalse-sqle-btrue, 
subtract-add-cancel, 
subtract_wf, 
exception-not-value2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
divergentSqle, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
axiomSqleEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
sqleRule, 
sqleReflexivity, 
baseClosed, 
baseApply, 
closedConclusion, 
independent_isectElimination, 
intEquality, 
addEquality, 
natural_numberEquality, 
callbyvalueAdd, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :lambdaFormation_alt, 
dependent_functionElimination, 
Error :equalityIstype, 
independent_functionElimination, 
intWeakElimination, 
rename, 
Error :lambdaEquality_alt, 
axiomEquality, 
unionElimination, 
equalityElimination, 
voidElimination, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
instantiate, 
cumulativity, 
exceptionSqequal
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:Base].    y  \mleq{}  x  supposing  x  \mleq{}  y
Date html generated:
2019_06_20-PM-00_25_57
Last ObjectModification:
2018_11_28-AM-10_06_28
Theory : int_1
Home
Index