Nuprl Lemma : exception-not-value2

[nm,val,t:Base].  (t ≤ exception(nm; val))  False supposing (t)↓


Proof




Definitions occuring in Statement :  has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] implies:  Q false: False base: Base sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q false: False has-value: (a)↓ prop:
Lemmas referenced :  exception-not-axiom base_wf sqle_wf_base is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation divergentSqle sqleRule hypothesis sqleReflexivity lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed sqequalRule baseApply closedConclusion hypothesisEquality callbyvalueReduce lambdaEquality dependent_functionElimination because_Cache isect_memberEquality equalityTransitivity equalitySymmetry voidElimination independent_functionElimination

Latex:
\mforall{}[nm,val,t:Base].    (t  \mleq{}  exception(nm;  val))  {}\mRightarrow{}  False  supposing  (t)\mdownarrow{}



Date html generated: 2016_05_13-PM-03_23_21
Last ObjectModification: 2016_01_14-PM-06_45_56

Theory : call!by!value_1


Home Index