Nuprl Lemma : exception-not-axiom
∀[nm,val:Base].  ((Ax ≤ exception(nm; val)) ⇒ False)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
false: False, 
base: Base, 
sqle: s ≤ t, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ
Lemmas referenced : 
sqle_wf_base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
exceptionNotAxiom, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
sqequalRule, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[nm,val:Base].    ((Ax  \mleq{}  exception(nm;  val))  {}\mRightarrow{}  False)
Date html generated:
2019_06_20-AM-11_20_37
Last ObjectModification:
2018_08_07-PM-01_59_57
Theory : call!by!value_1
Home
Index