Step
*
1
1
1
of Lemma
absval-diff-product-bound
.....assertion.....
1. u : ℕ
2. v : ℕu
3. x : ℕ
4. y : ℕx
⊢ |(u * x) - v * y| ~ (u * x) - v * y
BY
{ (RWO "absval_pos" 0
THEN Auto
THEN (Assert v ≤ u BY
Auto)
THEN Mul ⌜y⌝ (-1)⋅
THEN Auto
THEN (Assert y ≤ x BY
Auto)
THEN Mul ⌜u⌝ (-1)⋅
THEN Auto) }
Latex:
Latex:
.....assertion.....
1. u : \mBbbN{}
2. v : \mBbbN{}u
3. x : \mBbbN{}
4. y : \mBbbN{}x
\mvdash{} |(u * x) - v * y| \msim{} (u * x) - v * y
By
Latex:
(RWO "absval\_pos" 0
THEN Auto
THEN (Assert v \mleq{} u BY
Auto)
THEN Mul \mkleeneopen{}y\mkleeneclose{} (-1)\mcdot{}
THEN Auto
THEN (Assert y \mleq{} x BY
Auto)
THEN Mul \mkleeneopen{}u\mkleeneclose{} (-1)\mcdot{}
THEN Auto)
Home
Index