Step
*
of Lemma
div-search-lemma-ext
∀a:ℤ. ∀b:{a + 1...}. ∀f:ℤ ⟶ 𝔹.
∃x:{a..b-} [((∀y:{a..x + 1-}. (¬↑(f y))) ∧ (∀z:{x + 1..b + 1-}. (↑(f z))))]
supposing ∃x:{a..b-} [((∀y:{a..x + 1-}. (¬↑(f y))) ∧ (∀z:{x + 1..b + 1-}. (↑(f z))))]
BY
{ Extract of Obid: div-search-lemma
not unfolding divide
finishing with Auto
normalizes to:
λa,b,f. (letrec g(a)=λb.if (b - a) < (2)
then a
else eval c = a + ((b - a) ÷ 2) in
if f c then g a c else g c b fi in
g(a)
b) }
Latex:
Latex:
\mforall{}a:\mBbbZ{}. \mforall{}b:\{a + 1...\}. \mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbB{}.
\mexists{}x:\{a..b\msupminus{}\} [((\mforall{}y:\{a..x + 1\msupminus{}\}. (\mneg{}\muparrow{}(f y))) \mwedge{} (\mforall{}z:\{x + 1..b + 1\msupminus{}\}. (\muparrow{}(f z))))]
supposing \mexists{}x:\{a..b\msupminus{}\} [((\mforall{}y:\{a..x + 1\msupminus{}\}. (\mneg{}\muparrow{}(f y))) \mwedge{} (\mforall{}z:\{x + 1..b + 1\msupminus{}\}. (\muparrow{}(f z))))]
By
Latex:
Extract of Obid: div-search-lemma
not unfolding divide
finishing with Auto
normalizes to:
\mlambda{}a,b,f. (letrec g(a)=\mlambda{}b.if (b - a) < (2)
then a
else eval c = a + ((b - a) \mdiv{} 2) in
if f c then g a c else g c b fi in
g(a)
b)
Home
Index