Nuprl Lemma : div-search-lemma-ext

a:ℤ. ∀b:{a 1...}. ∀f:ℤ ⟶ 𝔹.
  ∃x:{a..b-[((∀y:{a..x 1-}. (¬↑(f y))) ∧ (∀z:{x 1..b 1-}. (↑(f z))))] 
  supposing ∃x:{a..b-[((∀y:{a..x 1-}. (¬↑(f y))) ∧ (∀z:{x 1..b 1-}. (↑(f z))))]


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} assert: b bool: 𝔹 uimplies: supposing a all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  member: t ∈ T subtract: m genrec-ap: genrec-ap ifthenelse: if then else fi  div-search-lemma divide-and-conquer decidable__assert uniform-comp-nat-induction decidable__lt decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable any: any x iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  div-search-lemma lifting-strict-decide istype-void strict4-decide lifting-strict-less divide-and-conquer decidable__assert uniform-comp-nat-induction decidable__lt decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a  +  1...\}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbB{}.
    \mexists{}x:\{a..b\msupminus{}\}  [((\mforall{}y:\{a..x  +  1\msupminus{}\}.  (\mneg{}\muparrow{}(f  y)))  \mwedge{}  (\mforall{}z:\{x  +  1..b  +  1\msupminus{}\}.  (\muparrow{}(f  z))))] 
    supposing  \mexists{}x:\{a..b\msupminus{}\}  [((\mforall{}y:\{a..x  +  1\msupminus{}\}.  (\mneg{}\muparrow{}(f  y)))  \mwedge{}  (\mforall{}z:\{x  +  1..b  +  1\msupminus{}\}.  (\muparrow{}(f  z))))]



Date html generated: 2019_06_20-PM-01_15_56
Last ObjectModification: 2019_03_12-PM-09_04_30

Theory : int_2


Home Index