Nuprl Lemma : divide-and-conquer
∀[Q:a:ℤ ⟶ {a...} ⟶ ℙ]
  ∀s:{2...}
    ((∀a:ℤ. ∀b:{a..a + s-}.  Q[a;b])
    
⇒ (∀a,b,c:ℤ.  (Q[a;c] 
⇒ Q[a;b]) ∨ (Q[c;b] 
⇒ Q[a;b]) supposing a < c ∧ c < b)
    
⇒ (∀a:ℤ. ∀b:{a...}.  Q[a;b]))
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
int_upper: {i...}
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
nat: ℕ
, 
ge: i ≥ j 
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
int_nzero: ℤ-o
, 
subtract: n - m
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
all_wf, 
isect_wf, 
less_than_wf, 
or_wf, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
int_seg_wf, 
subtype_rel_sets, 
lelt_wf, 
int_upper_wf, 
uniform-comp-nat-induction, 
nat_wf, 
uall_wf, 
decidable__lt, 
subtract_wf, 
nat_properties, 
itermAdd_wf, 
itermSubtract_wf, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_seg_properties, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
equal-wf-base, 
int_subtype_base, 
equal_wf, 
set-value-type, 
int-value-type, 
subtype_base_sq, 
mul_cancel_in_lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
div_rem_sum2, 
nequal_wf, 
rem_bounds_1, 
itermMinus_wf, 
int_term_value_minus_lemma, 
mul-distributes, 
minus-one-mul, 
mul-commutes, 
mul_bounds_1b, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul-top, 
add-associates, 
add-swap, 
less-iff-le, 
decidable__equal_int, 
itermMultiply_wf, 
int_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
applyEquality, 
functionExtensionality, 
productElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
universeEquality, 
addEquality, 
setEquality, 
cumulativity, 
independent_functionElimination, 
divideEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
cutEval, 
instantiate, 
multiplyEquality, 
minusEquality, 
applyLambdaEquality, 
imageElimination
Latex:
\mforall{}[Q:a:\mBbbZ{}  {}\mrightarrow{}  \{a...\}  {}\mrightarrow{}  \mBbbP{}]
    \mforall{}s:\{2...\}
        ((\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a..a  +  s\msupminus{}\}.    Q[a;b])
        {}\mRightarrow{}  (\mforall{}a,b,c:\mBbbZ{}.    (Q[a;c]  {}\mRightarrow{}  Q[a;b])  \mvee{}  (Q[c;b]  {}\mRightarrow{}  Q[a;b])  supposing  a  <  c  \mwedge{}  c  <  b)
        {}\mRightarrow{}  (\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a...\}.    Q[a;b]))
Date html generated:
2017_04_14-AM-09_17_14
Last ObjectModification:
2017_02_27-PM-03_54_55
Theory : int_2
Home
Index