Nuprl Lemma : divide-and-conquer

[Q:a:ℤ ⟶ {a...} ⟶ ℙ]
  ∀s:{2...}
    ((∀a:ℤ. ∀b:{a..a s-}.  Q[a;b])
     (∀a,b,c:ℤ.  (Q[a;c]  Q[a;b]) ∨ (Q[c;b]  Q[a;b]) supposing a < c ∧ c < b)
     (∀a:ℤ. ∀b:{a...}.  Q[a;b]))


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] uimplies: supposing a and: P ∧ Q so_apply: x[s1;s2] int_upper: {i...} guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top subtype_rel: A ⊆B so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k nat: ge: i ≥  nequal: a ≠ b ∈  sq_type: SQType(T) nat_plus: + le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) less_than': less_than'(a;b) true: True int_nzero: -o subtract: m less_than: a < b squash: T
Lemmas referenced :  all_wf isect_wf less_than_wf or_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf int_seg_wf subtype_rel_sets lelt_wf int_upper_wf uniform-comp-nat-induction nat_wf uall_wf decidable__lt subtract_wf nat_properties itermAdd_wf itermSubtract_wf int_term_value_add_lemma int_term_value_subtract_lemma int_seg_properties intformeq_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_constant_lemma equal-wf-base int_subtype_base equal_wf set-value-type int-value-type subtype_base_sq mul_cancel_in_lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel div_rem_sum2 nequal_wf rem_bounds_1 itermMinus_wf int_term_value_minus_lemma mul-distributes minus-one-mul mul-commutes mul_bounds_1b condition-implies-le minus-add minus-minus minus-one-mul-top add-associates add-swap less-iff-le decidable__equal_int itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule lambdaEquality productEquality hypothesisEquality hypothesis functionEquality applyEquality functionExtensionality productElimination dependent_set_memberEquality natural_numberEquality setElimination rename dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll universeEquality addEquality setEquality cumulativity independent_functionElimination divideEquality equalityTransitivity equalitySymmetry baseClosed cutEval instantiate multiplyEquality minusEquality applyLambdaEquality imageElimination

Latex:
\mforall{}[Q:a:\mBbbZ{}  {}\mrightarrow{}  \{a...\}  {}\mrightarrow{}  \mBbbP{}]
    \mforall{}s:\{2...\}
        ((\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a..a  +  s\msupminus{}\}.    Q[a;b])
        {}\mRightarrow{}  (\mforall{}a,b,c:\mBbbZ{}.    (Q[a;c]  {}\mRightarrow{}  Q[a;b])  \mvee{}  (Q[c;b]  {}\mRightarrow{}  Q[a;b])  supposing  a  <  c  \mwedge{}  c  <  b)
        {}\mRightarrow{}  (\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a...\}.    Q[a;b]))



Date html generated: 2017_04_14-AM-09_17_14
Last ObjectModification: 2017_02_27-PM-03_54_55

Theory : int_2


Home Index