Nuprl Lemma : div-search-lemma

a:ℤ. ∀b:{a 1...}. ∀f:ℤ ⟶ 𝔹.
  ∃x:{a..b-[((∀y:{a..x 1-}. (¬↑(f y))) ∧ (∀z:{x 1..b 1-}. (↑(f z))))] 
  supposing ∃x:{a..b-[((∀y:{a..x 1-}. (¬↑(f y))) ∧ (∀z:{x 1..b 1-}. (↑(f z))))]


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} assert: b bool: 𝔹 uimplies: supposing a all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  lelt: i ≤ j < k sq_stable: SqStable(P) squash: T guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top true: True all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] int_upper: {i...} so_lambda: λ2x.t[x] prop: and: P ∧ Q int_seg: {i..j-} so_apply: x[s] sq_exists: x:A [B[x]]
Lemmas referenced :  sq_stable__and sq_stable__all sq_stable__not sq_stable_from_decidable decidable__assert assert_witness istype-assert int_seg_properties int_upper_properties full-omega-unsat intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma itermAdd_wf itermConstant_wf int_term_value_add_lemma int_term_value_constant_lemma divide-and-conquer isect_wf istype-false istype-le member-less_than istype-less_than upper_subtype_upper decidable__le not-le-2 condition-implies-le minus-add istype-void minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel sq_exists_wf int_seg_wf all_wf not_wf assert_wf bool_wf istype-int_upper istype-int
Rules used in proof :  Error :inrFormation_alt,  promote_hyp Error :inlFormation_alt,  Error :isectIsType,  Error :dependent_set_memberFormation_alt,  Error :functionIsTypeImplies,  imageMemberEquality baseClosed imageElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality dependent_functionElimination Error :dependent_set_memberEquality_alt,  independent_pairFormation independent_functionElimination productElimination independent_pairEquality independent_isectElimination Error :productIsType,  unionElimination voidElimination Error :isect_memberEquality_alt,  minusEquality multiplyEquality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis sqequalRule Error :lambdaEquality_alt,  productEquality addEquality because_Cache closedConclusion natural_numberEquality applyEquality Error :functionIsType,  Error :inhabitedIsType

Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a  +  1...\}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbB{}.
    \mexists{}x:\{a..b\msupminus{}\}  [((\mforall{}y:\{a..x  +  1\msupminus{}\}.  (\mneg{}\muparrow{}(f  y)))  \mwedge{}  (\mforall{}z:\{x  +  1..b  +  1\msupminus{}\}.  (\muparrow{}(f  z))))] 
    supposing  \mexists{}x:\{a..b\msupminus{}\}  [((\mforall{}y:\{a..x  +  1\msupminus{}\}.  (\mneg{}\muparrow{}(f  y)))  \mwedge{}  (\mforall{}z:\{x  +  1..b  +  1\msupminus{}\}.  (\muparrow{}(f  z))))]



Date html generated: 2019_06_20-PM-02_12_35
Last ObjectModification: 2019_06_20-PM-02_08_48

Theory : int_2


Home Index