Step * 1 1 of Lemma find-xover-val_wf

.....antecedent..... 
1. Type
2. value-type(T)
3. test T ⟶ 𝔹
4. : ℕ
5. ∀d:ℕd
     ∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ T].
       find-xover-val(test;f;x;n;step) ∈ v:T
       × n':{n':ℤ(n ≤ n') ∧ (v (f n') ∈ T) ∧ test tt} 
       × {x':ℤ
          ((n' n ∈ ℤ) ∧ (x' x ∈ ℤ))
          ∨ (((n ≤ x') ∧ test (f x') ff) ∧ ((n' (n step) ∈ ℤ) ∨ ((n step) ≤ x')))}  
       supposing ∃m:{n..n d-}. ∀k:{m...}. test (f k) tt
6. : ℤ
7. {x...}
8. step : ℕ+
9. {x...} ⟶ T
10. ¬↑(test (f n))
11. {n..n d-}
12. ∀k:{m...}. test (f k) tt
⊢ ∃m:{n step..(n step) (d 1)-}. ∀k:{m...}. test (f k) tt
BY
Decide ⌜(n step) ≤ m⌝⋅ THENA Auto) }

1
1. Type
2. value-type(T)
3. test T ⟶ 𝔹
4. : ℕ
5. ∀d:ℕd
     ∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ T].
       find-xover-val(test;f;x;n;step) ∈ v:T
       × n':{n':ℤ(n ≤ n') ∧ (v (f n') ∈ T) ∧ test tt} 
       × {x':ℤ
          ((n' n ∈ ℤ) ∧ (x' x ∈ ℤ))
          ∨ (((n ≤ x') ∧ test (f x') ff) ∧ ((n' (n step) ∈ ℤ) ∨ ((n step) ≤ x')))}  
       supposing ∃m:{n..n d-}. ∀k:{m...}. test (f k) tt
6. : ℤ
7. {x...}
8. step : ℕ+
9. {x...} ⟶ T
10. ¬↑(test (f n))
11. {n..n d-}
12. ∀k:{m...}. test (f k) tt
13. (n step) ≤ m
⊢ ∃m:{n step..(n step) (d 1)-}. ∀k:{m...}. test (f k) tt

2
1. Type
2. value-type(T)
3. test T ⟶ 𝔹
4. : ℕ
5. ∀d:ℕd
     ∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ T].
       find-xover-val(test;f;x;n;step) ∈ v:T
       × n':{n':ℤ(n ≤ n') ∧ (v (f n') ∈ T) ∧ test tt} 
       × {x':ℤ
          ((n' n ∈ ℤ) ∧ (x' x ∈ ℤ))
          ∨ (((n ≤ x') ∧ test (f x') ff) ∧ ((n' (n step) ∈ ℤ) ∨ ((n step) ≤ x')))}  
       supposing ∃m:{n..n d-}. ∀k:{m...}. test (f k) tt
6. : ℤ
7. {x...}
8. step : ℕ+
9. {x...} ⟶ T
10. ¬↑(test (f n))
11. {n..n d-}
12. ∀k:{m...}. test (f k) tt
13. ¬((n step) ≤ m)
⊢ ∃m:{n step..(n step) (d 1)-}. ∀k:{m...}. test (f k) tt


Latex:


Latex:
.....antecedent..... 
1.  T  :  Type
2.  value-type(T)
3.  test  :  T  {}\mrightarrow{}  \mBbbB{}
4.  d  :  \mBbbN{}
5.  \mforall{}d:\mBbbN{}d
          \mforall{}[x:\mBbbZ{}].  \mforall{}[n:\{x...\}].  \mforall{}[step:\mBbbN{}\msupplus{}].  \mforall{}[f:\{x...\}  {}\mrightarrow{}  T].
              find-xover-val(test;f;x;n;step)  \mmember{}  v:T
              \mtimes{}  n':\{n':\mBbbZ{}|  (n  \mleq{}  n')  \mwedge{}  (v  =  (f  n'))  \mwedge{}  test  v  =  tt\} 
              \mtimes{}  \{x':\mBbbZ{}| 
                    ((n'  =  n)  \mwedge{}  (x'  =  x))
                    \mvee{}  (((n  \mleq{}  x')  \mwedge{}  test  (f  x')  =  ff)  \mwedge{}  ((n'  =  (n  +  step))  \mvee{}  ((n  +  step)  \mleq{}  x')))\}   
              supposing  \mexists{}m:\{n..n  +  d\msupminus{}\}.  \mforall{}k:\{m...\}.  test  (f  k)  =  tt
6.  x  :  \mBbbZ{}
7.  n  :  \{x...\}
8.  step  :  \mBbbN{}\msupplus{}
9.  f  :  \{x...\}  {}\mrightarrow{}  T
10.  \mneg{}\muparrow{}(test  (f  n))
11.  m  :  \{n..n  +  d\msupminus{}\}
12.  \mforall{}k:\{m...\}.  test  (f  k)  =  tt
\mvdash{}  \mexists{}m:\{n  +  step..(n  +  step)  +  (d  -  1)\msupminus{}\}.  \mforall{}k:\{m...\}.  test  (f  k)  =  tt


By


Latex:
(  Decide  \mkleeneopen{}(n  +  step)  \mleq{}  m\mkleeneclose{}\mcdot{}  THENA  Auto)




Home Index