Step
*
1
1
2
of Lemma
find-xover-val_wf
1. T : Type
2. value-type(T)
3. test : T ⟶ 𝔹
4. d : ℕ
5. ∀d:ℕd
     ∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ T].
       find-xover-val(test;f;x;n;step) ∈ v:T
       × n':{n':ℤ| (n ≤ n') ∧ (v = (f n') ∈ T) ∧ test v = tt} 
       × {x':ℤ| 
          ((n' = n ∈ ℤ) ∧ (x' = x ∈ ℤ))
          ∨ (((n ≤ x') ∧ test (f x') = ff) ∧ ((n' = (n + step) ∈ ℤ) ∨ ((n + step) ≤ x')))}  
       supposing ∃m:{n..n + d-}. ∀k:{m...}. test (f k) = tt
6. x : ℤ
7. n : {x...}
8. step : ℕ+
9. f : {x...} ⟶ T
10. ¬↑(test (f n))
11. m : {n..n + d-}
12. ∀k:{m...}. test (f k) = tt
13. ¬((n + step) ≤ m)
⊢ ∃m:{n + step..(n + step) + (d - 1)-}. ∀k:{m...}. test (f k) = tt
BY
{ (With ⌜n + step⌝ (D 0)⋅ THEN Auto) }
1
.....wf..... 
1. T : Type
2. value-type(T)
3. test : T ⟶ 𝔹
4. d : ℕ
5. ∀d:ℕd
     ∀[x:ℤ]. ∀[n:{x...}]. ∀[step:ℕ+]. ∀[f:{x...} ⟶ T].
       find-xover-val(test;f;x;n;step) ∈ v:T
       × n':{n':ℤ| (n ≤ n') ∧ (v = (f n') ∈ T) ∧ test v = tt} 
       × {x':ℤ| 
          ((n' = n ∈ ℤ) ∧ (x' = x ∈ ℤ))
          ∨ (((n ≤ x') ∧ test (f x') = ff) ∧ ((n' = (n + step) ∈ ℤ) ∨ ((n + step) ≤ x')))}  
       supposing ∃m:{n..n + d-}. ∀k:{m...}. test (f k) = tt
6. x : ℤ
7. n : {x...}
8. step : ℕ+
9. f : {x...} ⟶ T
10. ¬↑(test (f n))
11. m : {n..n + d-}
12. ∀k:{m...}. test (f k) = tt
13. ¬((n + step) ≤ m)
⊢ n + step ∈ {n + step..(n + step) + (d - 1)-}
Latex:
Latex:
1.  T  :  Type
2.  value-type(T)
3.  test  :  T  {}\mrightarrow{}  \mBbbB{}
4.  d  :  \mBbbN{}
5.  \mforall{}d:\mBbbN{}d
          \mforall{}[x:\mBbbZ{}].  \mforall{}[n:\{x...\}].  \mforall{}[step:\mBbbN{}\msupplus{}].  \mforall{}[f:\{x...\}  {}\mrightarrow{}  T].
              find-xover-val(test;f;x;n;step)  \mmember{}  v:T
              \mtimes{}  n':\{n':\mBbbZ{}|  (n  \mleq{}  n')  \mwedge{}  (v  =  (f  n'))  \mwedge{}  test  v  =  tt\} 
              \mtimes{}  \{x':\mBbbZ{}| 
                    ((n'  =  n)  \mwedge{}  (x'  =  x))
                    \mvee{}  (((n  \mleq{}  x')  \mwedge{}  test  (f  x')  =  ff)  \mwedge{}  ((n'  =  (n  +  step))  \mvee{}  ((n  +  step)  \mleq{}  x')))\}   
              supposing  \mexists{}m:\{n..n  +  d\msupminus{}\}.  \mforall{}k:\{m...\}.  test  (f  k)  =  tt
6.  x  :  \mBbbZ{}
7.  n  :  \{x...\}
8.  step  :  \mBbbN{}\msupplus{}
9.  f  :  \{x...\}  {}\mrightarrow{}  T
10.  \mneg{}\muparrow{}(test  (f  n))
11.  m  :  \{n..n  +  d\msupminus{}\}
12.  \mforall{}k:\{m...\}.  test  (f  k)  =  tt
13.  \mneg{}((n  +  step)  \mleq{}  m)
\mvdash{}  \mexists{}m:\{n  +  step..(n  +  step)  +  (d  -  1)\msupminus{}\}.  \mforall{}k:\{m...\}.  test  (f  k)  =  tt
By
Latex:
(With  \mkleeneopen{}n  +  step\mkleeneclose{}  (D  0)\mcdot{}  THEN  Auto)
Home
Index